1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
---
title: "Python API for applications"
author: "Dimitri Staessens"
description: Python
date: 2020-05-17
weight: 20
draft: false
description: >
Python API
---
The python API allows you to write Ouroboros-native programs in Python
(>=3.4) is available as a separate repository. You need Ouroboros
installed before installing PyOuroboros. To download and install
PyOuroboros(virtual environment recommended):
```sh
$ git clone https://ouroboros.rocks/git/pyouroboros
# Or github mirror:
# git clone https://github.com/dstaesse/pyouroboros
$ cd pyouroboros
./setup.py install
```
## Basic Usage
import the Ouroboros dev library:
```Python
from ouroboros.dev import *
```
On the server side, Accepting a flow:
```Python
f = flow_accept()
```
returns a new allocated flow object.
Client side: Allocating a flow to a certain _name_:
```Python
f = flow_alloc("name")
```
returns a new allocated Flow object.
Broadcast:
```Python
f = flow_join("name")
```
returns a new allocated Flow object to a broadcast layer.
When a flow is not needed anymore, it can be deallocated:
```Python
f.dealloc()
```
To avoid having to call dealloc(), you can also use the with
statement:
```Python
with flow_alloc("dst") as f:
f.writeline("line")
print(f.readline())
```
After the flow is deallocated, it is not readable or writeable
anymore.
```Python
f.alloc("name")
```
will allocate a new flow for an existing Flow object.
To read / write from a flow:
```Python
f.read(count) # read up to _count_ bytes and return bytes
f.readline(count) # read up to _count_ characters as a string
f.write(buf, count) # write up to _count_ bytes from buffer
f.writeline(str, count) # write up to _count_ characters from string
```
## Quality of Service (QoS)
You can specify a QoSSpec for flow allocation.
```Python
"""
delay: In ms, default 1000s
bandwidth: In bits / s, default 0
availability: Class of 9s, default 0
loss: Packet loss in ppm, default MILLION
ber: Bit error rate, errors per billion bits. default BILLION
in_order: In-order delivery, enables FRCT, default 0
max_gap: Maximum interruption in ms, default MILLION
cypher_s: Requested encryption strength in bits
"""
```
For instance,
```Python
qos = QoSSpec(loss=0, cypher_s=256)
f = flow_alloc("name", qos)
```
will create a new flow with FRCP retransmission enabled and encrypted
using a 256-bit ECDHE-AES-SHA3 cypher. The number of encryption
options will further expand as the prototype matures.
## Manipulating flows
A number of methods are currently available for how to interact with
Flow. This will further expand as the prototype matures.
```Python
f.set_snd_timeout(0.5) # set timeout for blocking write
f.set_rcv_timeout(1.0) # set timeout for blocking read
f.get_snd_timeout() # get timeout for blocking write
f.get_rcv_timeout() # get timeout for blocking read
f.get_qos() # get the QoSSpec for this flow
f.get_rx_queue_len() # get the number of packets in the rx buffer
f.get_tx_queue_len() # get the number of packets in the tx buffer
f.set_flags(flags) # set a number of flags for this flow
f.get_flags() # get the flags for this flow
```
The following flags are specified as an enum FlowProperties:
```Python
class FlowProperties(IntFlag):
ReadOnly
WriteOnly
ReadWrite
Down
NonBlockingRead
NonBlockingWrite
NonBlocking
NoPartialRead
NoPartialWrite
```
See the Ouroboros fccntl documentation for more details.
```shell
man fccntl
```
## Event API
Multiple flows can be monitored for activity in parallel using a
FlowSet and FEventQueue objects.
FlowSets allow grouping a bunch of Flow objects together to listen for
activity. It can be constructed with an optional list of Flows, or
flows can be added or removed using the following methods:
```Python
set = FlowSet() # create a flow set,
set.add(f) # add a Flow 'f' to this set
set.remove(f) # remove a Flow 'f' from this set
set.zero() # remove all Flows in this set
```
An FEventQueue stores pending events on flows.
The event types are defined as follows:
```Python
class FEventType(IntFlag):
FlowPkt
FlowDown
FlowUp
FlowAlloc
FlowDealloc
```
and can be obtained by calling the next method:
```Python
f, t = fq.next() # Return active flow 'f' and type of event 't'
```
An FEventQueue is populated from a FlowSet.
```Python
fq = FEventQueue() # Create an eventqueue
set = FlowSet([f1, f2, f3]) # Create a new set with a couple of Flow objects
set.wait(fq, timeo=1.0) # Wait for 1 second or until event
while f, t = fq.next():
if t == FEventType.FlowPkt:
msg = f.readline()
...
set.destroy()
```
A flow_set must be destroyed when it goes out of scope.
To avoid having to call destroy, Python's with statement can be used:
```Python
fq = FEventQueue()
with FlowSet([f]) as fs:
fs.wait(fq)
f2, t = fq.next()
if t == FEventType.FlowPkt:
line = f2.readline()
```
## Examples
Some example code is in the repository's
[examples](https://ouroboros.rocks/cgit/pyouroboros/tree/examples/) folder.
The following example is a clone of the oecho program in Python. The
client opens a flow to oecho and sends a brief message. The server
will echo this message back to the client.
```Python
from ouroboros.dev import *
import argparse
def client():
with flow_alloc("oecho") as f:
f.writeline("Hello, PyOuroboros!")
print(f.readline())
def server():
print("Starting the server.")
while True:
with flow_accept() as f:
print("New flow.")
line = f.readline()
print("Message from client is " + line)
f.writeline(line)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='A simple echo client/server')
parser.add_argument('-l', '--listen', help='run as a server', action='store_true')
args = parser.parse_args()
server() if args.listen is True else client()
```
Running it is just the same as the binary program, register the name
"oecho", bind the server to "oecho" (you can even bind both the C and
Python programs at the same time), and allocating a flow should reach
the server. For a local layer
```bash
$ irm i b t local n local l local
$ irm n r oecho l local
$ irm b prog ./oechy.py n oecho
$ ./oecho.py -l &
# or:
# python oecho.py -l
$ ./oechy.py
```
## License
pyOuorboros is LGPLv2.1. The examples are 3-clause BSD.
|