blob: 39b3a80e7cedd99c344c0055960139bfaf9d190d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
library UNISIM;
use UNISIM.VComponents.all;
entity buff is
Port ( wr_clk : in STD_LOGIC;
wr_en : in STD_LOGIC;
wr_data : in STD_LOGIC_VECTOR (63 downto 0);
wr_done : in STD_LOGIC;
wr_cancel : in std_logic := '0';
wr_accept : out STD_LOGIC;
rd_clk : in STD_LOGIC;
rd_en : in STD_LOGIC;
rd_data : out STD_LOGIC_VECTOR (63 downto 0) := (others => '0');
rd_length : out STD_LOGIC_VECTOR (8 downto 0) := (others => '0');
rd_valid : out STD_LOGIC := '0');
end buff;
architecture arch of buff is
COMPONENT ram_4kB
PORT (
clka : IN STD_LOGIC;
wea : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
addra : IN STD_LOGIC_VECTOR(8 DOWNTO 0);
dina : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
clkb : IN STD_LOGIC;
addrb : IN STD_LOGIC_VECTOR(8 DOWNTO 0);
doutb : OUT STD_LOGIC_VECTOR(63 DOWNTO 0)
);
END COMPONENT;
signal ram_wr_en : std_logic_vector(0 downto 0);
signal ram_wr_addr : std_logic_vector(8 downto 0);
signal ram_wr_data : std_logic_vector(63 downto 0);
signal ram_rd_addr : std_logic_vector(8 downto 0);
signal ram_rd_data : std_logic_vector(63 downto 0);
constant W1 : std_logic_vector(1 downto 0) := "00";
constant W2 : std_logic_vector(1 downto 0) := "11";
constant R1 : std_logic_vector(1 downto 0) := "01";
constant R2 : std_logic_vector(1 downto 0) := "10";
signal wr_owner : std_logic_vector(1 downto 0) := W1;
signal rd_owner : std_logic_vector(1 downto 0) := W1;
signal wr_owner_tmp : std_logic_vector(1 downto 0) := W1;
signal wr_owner_sync : std_logic_vector(1 downto 0) := W1;
-- MAX: 256 bytes less than 4kB, for ouroboros
-- 4kB = 512 x 64 bits
-- 256 bytes = 32 x 64 bits
-- 512 - 32 = 480
-- 480 = "111100000"
constant MAX : std_logic_vector(8 downto 0) := "111100000";
constant ZERO : std_logic_vector(8 downto 0) := "000000000";
constant ONE : std_logic_vector(8 downto 0) := "000000001";
type state_t is (state_empty, state_wait, state_full, state_first, state_valid);
signal rd_state : state_t := state_empty;
signal rd_addr : std_logic_vector(8 downto 0) := MAX;
begin
ram : ram_4kB
PORT MAP (
clka => wr_clk,
wea => ram_wr_en,
addra => ram_wr_addr,
dina => ram_wr_data,
clkb => rd_clk,
addrb => ram_rd_addr,
doutb => ram_rd_data
);
wr_accept <= '1' when (wr_owner = W1 or wr_owner = W2) and wr_done = '0' and wr_cancel = '0' else '0';
process (wr_clk)
variable wr_count : std_logic_vector(8 downto 0) := ZERO;
begin
if rising_edge(wr_clk) then
ram_wr_en(0) <= '0';
ram_wr_addr <= (others => '0');
ram_wr_data <= (others => '0');
if wr_owner = W1 or wr_owner = W2 then
if wr_cancel = '1' then
wr_count := ZERO;
elsif wr_done = '1' then
if wr_count /= ZERO then
if wr_owner = W1 then
wr_owner <= R1;
ram_wr_data(1 downto 0) <= R1;
else
wr_owner <= R2;
ram_wr_data(1 downto 0) <= R2;
end if;
ram_wr_en(0) <= '1';
ram_wr_addr <= MAX;
ram_wr_data(10 downto 2) <= wr_count;
wr_count := ZERO;
end if;
elsif wr_en = '1' then
if wr_count /= MAX then
ram_wr_en(0) <= '1';
ram_wr_addr <= wr_count;
ram_wr_data <= wr_data;
wr_count := std_logic_vector(unsigned(wr_count) + 1);
end if;
end if;
elsif wr_owner = R1 then
if wr_owner_sync = W2 then
wr_owner <= W2;
end if;
elsif wr_owner = R2 then
if wr_owner_sync = W1 then
wr_owner <= W1;
end if;
end if;
wr_owner_tmp <= rd_owner;
wr_owner_sync <= wr_owner_tmp;
end if;
end process;
ram_rd_addr <= std_logic_vector(unsigned(rd_addr) + 1)
when rd_state = state_valid and rd_en = '1'
else rd_addr;
process (rd_clk)
variable rd_count : std_logic_vector(8 downto 0) := ZERO;
variable tmp : std_logic_vector(1 downto 0);
begin
if rising_edge(rd_clk) then
if rd_state = state_empty then
rd_state <= state_wait;
elsif rd_state = state_wait then
tmp := ram_rd_data(1 downto 0);
if (rd_owner = W1 and tmp = R1) or
(rd_owner = W2 and tmp = R2) then
rd_state <= state_full;
rd_addr <= ZERO;
rd_count := ram_rd_data(10 downto 2);
rd_owner <= tmp;
end if;
elsif rd_state = state_full then
rd_state <= state_first;
rd_addr <= ONE;
elsif rd_state = state_first then
rd_state <= state_valid;
rd_valid <= '1';
rd_data <= ram_rd_data;
rd_length <= rd_count;
elsif rd_state = state_valid then
if rd_en = '1' then
if rd_addr = rd_count then
rd_state <= state_empty;
rd_addr <= MAX;
rd_valid <= '0';
rd_data <= (others => '0');
rd_length <= ZERO;
rd_count := ZERO;
if rd_owner = R1 then
rd_owner <= W2;
else
rd_owner <= W1;
end if;
else
rd_addr <= ram_rd_addr;
rd_data <= ram_rd_data;
end if;
end if;
end if;
end if;
end process;
end arch;
|