aboutsummaryrefslogtreecommitdiff
path: root/content/en/blog/news
diff options
context:
space:
mode:
Diffstat (limited to 'content/en/blog/news')
-rw-r--r--content/en/blog/news/20191006-new-site.md7
-rw-r--r--content/en/blog/news/20200116-hn.md30
-rw-r--r--content/en/blog/news/20200212-ecmp.md68
-rw-r--r--content/en/blog/news/20200216-ecmp.md118
-rw-r--r--content/en/blog/news/20200502-frcp.md236
-rw-r--r--content/en/blog/news/20200507-python-lb.pngbin218383 -> 0 bytes
-rw-r--r--content/en/blog/news/20200507-python.md74
-rw-r--r--content/en/blog/news/20201212-congestion-avoidance.md358
-rw-r--r--content/en/blog/news/20201212-congestion.pngbin54172 -> 0 bytes
-rw-r--r--content/en/blog/news/20201219-congestion-avoidance.md313
-rw-r--r--content/en/blog/news/20201219-congestion.pngbin189977 -> 0 bytes
-rw-r--r--content/en/blog/news/20201219-exp.svg1
-rw-r--r--content/en/blog/news/20201219-ws-0.pngbin419135 -> 0 bytes
-rw-r--r--content/en/blog/news/20201219-ws-1.pngbin432812 -> 0 bytes
-rw-r--r--content/en/blog/news/20201219-ws-2.pngbin428663 -> 0 bytes
-rw-r--r--content/en/blog/news/20201219-ws-3.pngbin417961 -> 0 bytes
-rw-r--r--content/en/blog/news/20201219-ws-4.pngbin423835 -> 0 bytes
-rw-r--r--content/en/blog/news/_index.md5
18 files changed, 0 insertions, 1210 deletions
diff --git a/content/en/blog/news/20191006-new-site.md b/content/en/blog/news/20191006-new-site.md
deleted file mode 100644
index c04ff2d..0000000
--- a/content/en/blog/news/20191006-new-site.md
+++ /dev/null
@@ -1,7 +0,0 @@
----
-date: 2019-10-06
-title: "New Website"
-linkTitle: "New Ouroboros website"
-description: "Announcing the new website"
-author: Dimitri Staessens
----
diff --git a/content/en/blog/news/20200116-hn.md b/content/en/blog/news/20200116-hn.md
deleted file mode 100644
index b80a7bd..0000000
--- a/content/en/blog/news/20200116-hn.md
+++ /dev/null
@@ -1,30 +0,0 @@
----
-date: 2020-01-16
-title: "Getting back to work"
-linkTitle: "Getting back to work"
-description: "Show HN - Ouroboros"
-author: Dimitri Staessens
----
-
-Yesterday there was a bit of an unexpected spike in interest in
-Ouroboros following a [post on
-HN](https://news.ycombinator.com/item?id=22052416). I'm really
-humbled by the response and grateful to all the people that show
-genuine interest in this project.
-
-I fully understand that people would like to know a lot more details
-about Ouroboros than the current site provides. It was the top
-priority on the todo list, and this new interest gives me some
-additional motivation to get to it. There's a lot to Ouroboros that's
-not so trivial, which makes writing clear documentation a tricky
-thing to do.
-
-I will also tackle some of the questions from the HN in a series of
-blog posts in the next few days, replacing the (very old and outdated)
-FAQ section. I hope these will be useful.
-
-Again thank you for your interest.
-
-Sincerely,
-
-Dimitri
diff --git a/content/en/blog/news/20200212-ecmp.md b/content/en/blog/news/20200212-ecmp.md
deleted file mode 100644
index 019b40d..0000000
--- a/content/en/blog/news/20200212-ecmp.md
+++ /dev/null
@@ -1,68 +0,0 @@
----
-date: 2020-02-12
-title: "Equal-Cost Multipath (ECMP)"
-linkTitle: "Adding Equal-Cost multipath (ECMP)"
-description: "ECMP is coming to Ouroboros (finally)"
-author: Dimitri Staessens
----
-
-Some recent news -- Multi-Path TCP (MPTCP) implementation is [landing
-in mainstream Linux kernel
-5.6](https://www.phoronix.com/scan.php?page=news_item&px=Linux-5.6-Starts-Multipath-TCP)
--- finally got me to integrate the equal-cost multipath (ECMP)
-implementation from [Nick Aerts's master
-thesis](https://lib.ugent.be/nl/catalog/rug01:002494958) into
-Ouroboros. And working on the ECMP implementation in gives me an
-excuse to rant a little bit about MPTCP.
-
-The first question that comes to mind is: _Why is it called
-multi-**path** TCP_? IP is routing packets, not TCP, and there are
-equal-cost multipath options for IP in both [IS-IS and
-OSPF](https://tools.ietf.org/html/rfc2991). Maybe _multi-flow TCP_
-would be a better name? This would also be more transparent to the
-fact that running MPTCP over longer hops will make less sense, since
-the paths are more likely to converge over the same link.
-
-So _why is there a need for multi-path TCP_? The answer, of course, is
-that the Internet Protocol routes packets between IP endpoints, which
-are _interfaces_, not _hosts_. So, if a server is connected over 4
-interfaces, ECMP routing will not be of any help if one of them goes
-down. The TCP connections will time out. Multipath TCP, however, is
-actually establishing 4 subflows, each over a different interface. If
-an interface goes down, MPTCP will still have 3 subflows ready. The
-application is listening the the main TCP connection, and will not
-notice a TCP-subflow timing out[^1].
-
-This brings us, of course, to the crux of the problem. IP names the
-[point of attachment](https://tools.ietf.org/html/rfc1498); IP
-addresses are assigned to interfaces. Another commonly used workaround
-is a virtual IP interface on the loopback, but then you need a lot of
-additional configuration (and if that were the perfect solution, one
-wouldn't need MPTCP!). MPTCP avoids the network configuration mess,
-but does require direct modification in the application using
-[additions to the sockets
-API](https://tools.ietf.org/html/draft-hesmans-mptcp-socket-03) in the
-form of a bunch of (ugly) setsockopts.
-
-Now this is a far from ideal situation, but given its constraints,
-MPTCP is a workable engineering solution that will surely see its
-uses. It's strange that it took years for MPTCP to get to this stage.
-
-Now, of course, Ouroboros does not assign addresses to
-points-of-attachments ( _flow endpoints_). It doesn't even assign
-addresses to hosts/nodes! Instead, the address is derived from the
-forwarding protocol machines inside each node. (For the details, see
-the [article](https://arxiv.org/pdf/2001.09707.pdf)). The net effect
-is that an ECMP routing algorithm can cleanly handle hosts with
-multiple interfaces. Details about the routing algorithm are not
-exposed to application APIs. Instead, Ouroboros applications request
-an implementation-independent _service_.
-
-The ECMP patch for Ouroboros is coming _soon_. Once it's available I
-will also add a couple of tutorials on it.
-
-Peace.
-
-Dimitri
-
-[^1]: Question: Why are the subflows not UDP? That would avoid a lot of duplicated overhead (sequence numbers etc)... Would it be too messy on the socket API side? \ No newline at end of file
diff --git a/content/en/blog/news/20200216-ecmp.md b/content/en/blog/news/20200216-ecmp.md
deleted file mode 100644
index ce632c9..0000000
--- a/content/en/blog/news/20200216-ecmp.md
+++ /dev/null
@@ -1,118 +0,0 @@
----
-date: 2020-02-16
-title: "Equal-Cost Multipath (ECMP) routing"
-linkTitle: "Equal-Cost multipath (ECMP) example"
-description: "A very quick example of ECMP"
-author: Dimitri Staessens
----
-
-As promised, I added equal cost multipath routing to the Ouroboros
-unicast IPCP. I will add some more explanations later when it's fully
-tested and merge into the master branch, but you can already try it.
-You will need to pull the _be_ branch. You will also need to have
-_fuse_ installed to monitor the flows from _/tmp/ouroboros/_. The
-following script will bootstrap a 4-node unicast network on your
-machine that routes using ECMP:
-
-```bash
-#!/bin/bash
-
-# create a local IPCP. This emulates the "Internet"
-irm i b t local n local l local
-
-#create the first unicast IPCP with ecmp
-irm i b t unicast n uni.a l net routing ecmp
-
-#bind the unicast IPCP to the names net and uni.a
-irm b i uni.a n net
-irm b i uni.a n uni.a
-
-#register these 2 names in the local IPCP
-irm n r net l local
-irm n r uni.a l local
-
-#create 3 more unicast IPCPs, and enroll them with the first
-irm i e t unicast n uni.b l net
-irm b i uni.b n net
-irm b i uni.b n uni.b
-irm n r uni.b l local
-
-irm i e t unicast n uni.c l net
-irm b i uni.c n net
-irm b i uni.c n uni.c
-irm n r uni.c l local
-
-irm i e t unicast n uni.d l net
-irm b i uni.d n net
-irm b i uni.d n uni.d
-irm n r uni.d l local
-
-#connect uni.b to uni.a this creates a DT flow and a mgmt flow
-irm i conn name uni.b dst uni.a
-
-#now do the same for the others, creating a square
-irm i conn name uni.c dst uni.b
-irm i conn name uni.d dst uni.c
-irm i conn name uni.d dst uni.a
-
-#register the oping application at 4 different locations
-#this allows us to check the multipath implementation
-irm n r oping.a i uni.a
-irm n r oping.b i uni.b
-irm n r oping.c i uni.c
-irm n r oping.d i uni.d
-
-#bind oping program to oping names
-irm b prog oping n oping.a
-irm b prog oping n oping.b
-irm b prog oping n oping.c
-irm b prog oping n oping.d
-
-#good to go!
-```
-
-In order to test the setup, start an irmd (preferably in a terminal so
-you can see what's going on). In another terminal, run the above
-script and then start an oping server:
-
-```bash
-$ ./ecmpscript
-$ oping -l
-Ouroboros ping server started.
-```
-
-This single server program will accept all flows for oping from any of
-the unicast IPCPs. Ouroboros _multi-homing_ in action.
-
-Open another terminal, and type the following command:
-
-```bash
-$ watch -n 1 'grep "sent (packets)" /tmp/ouroboros/uni.a/dt.*/6* | sed -n -e 1p -e 7p'
-```
-
-This will show you the packet statistics from the 2 data transfer
-flows from the first IPCP (uni.a).
-
-On my machine it looks like this:
-
-```
-Every 1,0s: grep "sent (packets)" /tmp/ouroboros/uni.a/dt.*/6* | sed -n -e 1p -e 7p
-
-/tmp/ouroboros/uni.a/dt.1896199821/65: sent (packets): 10
-/tmp/ouroboros/uni.a/dt.1896199821/67: sent (packets): 6
-```
-
-Now, from yet another terminal, run connect an oping client to oping.c
-(the client should attach to the first IPCP, so oping.c should be the
-one with 2 equal cost paths) and watch both counters increase:
-
-```bash
-oping -n oping.c -i 100ms
-```
-
-When you do this to the other destinations (oping.b and oping.d) you
-should see only one of the flow counters increasing.
-
-Hope you enjoyed this little demo!
-
-Dimitri
diff --git a/content/en/blog/news/20200502-frcp.md b/content/en/blog/news/20200502-frcp.md
deleted file mode 100644
index 28c5794..0000000
--- a/content/en/blog/news/20200502-frcp.md
+++ /dev/null
@@ -1,236 +0,0 @@
----
-date: 2020-05-02
-title: "Flow and Retransmission Control Protocol (FRCP) implementation"
-linkTitle: "Flow and Retransmission Control Protocol (FRCP)"
-description: "A quick demo of FRCP"
-author: Dimitri Staessens
----
-
-With the longer weekend I had some fun implementing (parts of) the
-[Flow and Retransmission Control Protocol (FRCP)](/docs/concepts/protocols/#flow-and-retransmission-control-protocol-frcp)
-to the point that it's stable enough to bring you a very quick demo of it.
-
-FRCP is the Ouroboros alternative to TCP / QUIC / LLC. It assures
-delivery of packets when the network itself isn't very reliable.
-
-The setup is simple: we run Ouroboros over the Ethernet loopback
-adapter _lo_,
-```
-systemctl restart ouroboros
-irm i b t eth-dix l dix n dix dev lo
-```
-to which we add some impairment
-[_qdisc_](http://man7.org/linux/man-pages/man8/tc-netem.8.html):
-
-```
-$ sudo tc qdisc add dev lo root netem loss 8% duplicate 3% reorder 10% delay 1
-```
-
-This causes the link to lose, duplicate and reorder packets.
-
-We can use the oping tool to uses different [QoS
-specs](https://ouroboros.rocks/cgit/ouroboros/tree/include/ouroboros/qos.h)
-and watch the behaviour. Quality-of-Service (QoS) specs are a
-technology-agnostic way to request a network service (current
-status - not finalized yet). I'll also capture tcpdump output.
-
-We start an oping server and tell Ouroboros for it to listen to the _name_ "oping":
-```
-#bind the program oping to the name oping
-irm b prog oping n oping
-#register the name oping in the Ethernet layer that is attached to the loopback
-irm n r oping l dix
-#run the oping server
-oping -l
-```
-
-We'll now send 20 pings. If you try this, it can be that the flow
-allocation fails, due to the loss of a flow allocation packet (a bit
-similar to TCP losing the first SYN). The oping client currently
-doesn't retry flow allocation. The default payload for oping is 64
-bytes (of zeros); oping waits 2 seconds for all packets it has
-sent. It doesn't detect duplicates.
-
-Let's first look at the _raw_ QoS cube. That's like best-effort
-UDP/IP. In Ouroboros, however, it doesn't require a packet header at
-all.
-
-First, the output of the client using a _raw_ QoS cube:
-```
-$ oping -n oping -c 20 -i 200ms -q raw
-Pinging oping with 64 bytes of data (20 packets):
-
-64 bytes from oping: seq=0 time=0.880 ms
-64 bytes from oping: seq=1 time=0.742 ms
-64 bytes from oping: seq=4 time=1.303 ms
-64 bytes from oping: seq=6 time=0.739 ms
-64 bytes from oping: seq=6 time=0.771 ms [out-of-order]
-64 bytes from oping: seq=6 time=0.789 ms [out-of-order]
-64 bytes from oping: seq=7 time=0.717 ms
-64 bytes from oping: seq=8 time=0.759 ms
-64 bytes from oping: seq=9 time=0.716 ms
-64 bytes from oping: seq=10 time=0.729 ms
-64 bytes from oping: seq=11 time=0.720 ms
-64 bytes from oping: seq=12 time=0.718 ms
-64 bytes from oping: seq=13 time=0.722 ms
-64 bytes from oping: seq=14 time=0.700 ms
-64 bytes from oping: seq=16 time=0.670 ms
-64 bytes from oping: seq=17 time=0.712 ms
-64 bytes from oping: seq=18 time=0.716 ms
-64 bytes from oping: seq=19 time=0.674 ms
-Server timed out.
-
---- oping ping statistics ---
-20 packets transmitted, 18 received, 2 out-of-order, 10% packet loss, time: 6004.273 ms
-rtt min/avg/max/mdev = 0.670/0.765/1.303/0.142 ms
-```
-
-The _netem_ did a good job of jumbling up the traffic! There were a
-couple out-of-order, duplicates, and quite some packets lost.
-
-Let's dig into an Ethernet frame captured from the "wire". The most
-interesting thing its small total size: 82 bytes.
-
-```
-13:37:25.875092 00:00:00:00:00:00 (oui Ethernet) > 00:00:00:00:00:00 (oui Ethernet), ethertype Unknown (0xa000), length 82:
- 0x0000: 0042 0040 0000 0001 0000 0011 e90c 0000 .B.@............
- 0x0010: 0000 0000 203f 350f 0000 0000 0000 0000 .....?5.........
- 0x0020: 0000 0000 0000 0000 0000 0000 0000 0000 ................
- 0x0030: 0000 0000 0000 0000 0000 0000 0000 0000 ................
- 0x0040: 0000 0000
-```
-
-The first 12 bytes are the two MAC addresses (all zeros), then 2 bytes
-for the "Ethertype" (the default for an Ouroboros layer is 0xa000, so
-you can create more layers and seperate them by Ethertype[^1]. The
-Ethernet Payload is thus 68 bytes. The Ouroboros _ipcpd-eth-dix_ adds
-and extra header of 4 bytes with 2 extra "fields". The first field we
-needed to take over from our [Data
-Transfer](/docs/concepts/protocols/) protocol: the Endpoint Identifier
-that identifies the flow. The _ipcpd-eth-dix_ has two endpoints, one
-for the client and one for the server. 0x0042 (66) is the destination
-EID of the server, 0x0043 (67) is the destination EID of the client.
-The second field is the _length_ of the payload in octets, 0x0040 =
-64. This is needed because Ethernet II has a minimum frame size of 64
-bytes and pads smaller frames (called _runt frames_)[^2]. The
-remaining 64 bytes are the oping payload, giving us an 82 byte packet.
-
-That's it for the raw QoS. The next one is _voice_. A voice service
-usually requires packets to be delivered with little delay and jitter
-(i.e. ASAP). Out-of-order packets are rejected since they cause
-artifacts in the audio output. The voice QoS will enable FRCP, because
-it needs to track sequence numbers.
-
-```
-$ oping -n oping -c 20 -i 200ms -q voice
-Pinging oping with 64 bytes of data (20 packets):
-
-64 bytes from oping: seq=0 time=0.860 ms
-64 bytes from oping: seq=2 time=0.704 ms
-64 bytes from oping: seq=3 time=0.721 ms
-64 bytes from oping: seq=4 time=0.706 ms
-64 bytes from oping: seq=5 time=0.721 ms
-64 bytes from oping: seq=6 time=0.710 ms
-64 bytes from oping: seq=7 time=0.721 ms
-64 bytes from oping: seq=8 time=0.691 ms
-64 bytes from oping: seq=10 time=0.691 ms
-64 bytes from oping: seq=12 time=0.702 ms
-64 bytes from oping: seq=13 time=0.730 ms
-64 bytes from oping: seq=14 time=0.716 ms
-64 bytes from oping: seq=15 time=0.725 ms
-64 bytes from oping: seq=16 time=0.709 ms
-64 bytes from oping: seq=17 time=0.703 ms
-64 bytes from oping: seq=18 time=0.693 ms
-64 bytes from oping: seq=19 time=0.666 ms
-Server timed out.
-
---- oping ping statistics ---
-20 packets transmitted, 17 received, 0 out-of-order, 15% packet loss, time: 6004.243 ms
-rtt min/avg/max/mdev = 0.666/0.716/0.860/0.040 ms
-```
-
-As you can see, packets are delivered in-order, and some packets are
-missing. Nothing fancy. Let's look at a data packet:
-
-```
-14:06:05.607699 00:00:00:00:00:00 (oui Ethernet) > 00:00:00:00:00:00 (oui Ethernet), ethertype Unknown (0xa000), length 94:
- 0x0000: 0045 004c 0100 0000 eb1e 73ad 0000 0000 .E.L......s.....
- 0x0010: 0000 0000 0000 0012 a013 0000 0000 0000 ................
- 0x0020: 705c e53a 0000 0000 0000 0000 0000 0000 p\.:............
- 0x0030: 0000 0000 0000 0000 0000 0000 0000 0000 ................
- 0x0040: 0000 0000 0000 0000 0000 0000 0000 0000 ................
-
-```
-
-The same 18-byte header is present. The flow endpoint ID is a
-different one, and the length is also different. The packet is 94
-bytes, the payload length for the _ipcp-eth_dix_ is 0x004c = 76
-octets. So the FRCP header adds 12 bytes, the total overhead is 30
-bytes. Maybe a bit more detail on the FRCP header contents (more depth
-is available the protocol documentation). The first 2 bytes are the
-FLAGS (0x0100). There are only 7 flags, it's 16 bits for memory
-alignment. This packet only has the DATA bit set. Then follows the
-flow control window, which is 0 (not implemented yet). Then we have a
-4 byte sequence number (eb1e 73ae = 3944641454)[^3] and a 4 byte ACK
-number, which is 0. The remaining 64 bytes are the oping payload.
-
-Next, the data QoS:
-
-```
-$ oping -n oping -c 20 -i 200ms -q data
-Pinging oping with 64 bytes of data (20 packets):
-
-64 bytes from oping: seq=0 time=0.932 ms
-64 bytes from oping: seq=1 time=0.701 ms
-64 bytes from oping: seq=2 time=200.949 ms
-64 bytes from oping: seq=3 time=0.817 ms
-64 bytes from oping: seq=4 time=0.753 ms
-64 bytes from oping: seq=5 time=0.730 ms
-64 bytes from oping: seq=6 time=0.726 ms
-64 bytes from oping: seq=7 time=0.887 ms
-64 bytes from oping: seq=8 time=0.878 ms
-64 bytes from oping: seq=9 time=0.883 ms
-64 bytes from oping: seq=10 time=0.865 ms
-64 bytes from oping: seq=11 time=401.192 ms
-64 bytes from oping: seq=12 time=201.047 ms
-64 bytes from oping: seq=13 time=0.872 ms
-64 bytes from oping: seq=14 time=0.966 ms
-64 bytes from oping: seq=15 time=0.856 ms
-64 bytes from oping: seq=16 time=0.849 ms
-64 bytes from oping: seq=17 time=0.843 ms
-64 bytes from oping: seq=18 time=0.797 ms
-64 bytes from oping: seq=19 time=0.728 ms
-
---- oping ping statistics ---
-20 packets transmitted, 20 received, 0 out-of-order, 0% packet loss, time: 4004.491 ms
-rtt min/avg/max/mdev = 0.701/40.864/401.192/104.723 ms
-```
-
-With the data spec, we have no packet loss, but some packets have been
-retransmitted (hence the higher latency). The reason for the very high
-latency is that the current implementation only ACKs on data packets,
-this will be fixed soon.
-
-Looking at an Ethernet frame, it's again 94 bytes:
-
-```
-14:35:42.612066 00:00:00:00:00:00 (oui Ethernet) > 00:00:00:00:00:00 (oui Ethernet), ethertype Unknown (0xa000), length 94:
- 0x0000: 0044 004c 0700 0000 81b8 0259 e2f3 eb59 .D.L.......Y...Y
- 0x0010: 0000 0000 0000 0012 911a 0000 0000 0000 ................
- 0x0020: 86b3 273b 0000 0000 0000 0000 0000 0000 ..';............
- 0x0030: 0000 0000 0000 0000 0000 0000 0000 0000 ................
- 0x0040: 0000 0000 0000 0000 0000 0000 0000 0000 ................
-
-```
-
-The main difference is that it has 2 flags set (DATA + ACK), and it
-thus contains both a sequence number (81b8 0259) and an
-acknowledgement (e2f3 eb59).
-
-That's about it for now. More to come soon.
-
-Dimitri
-
-[^1]: Don't you love standards? One of the key design objectives for Ouroboros is exactly to avoid such shenanigans. Modify/abuse a header and Ouroboros should reject it because it _cannot work_, not because some standard says one shouldn't do it.
-[^2]: Lesser known fact: Gigabit Ethernet has a 512 byte minimum frame size; but _carrier extension_ handles this transparently.
-[^3]: In _network byte order_. \ No newline at end of file
diff --git a/content/en/blog/news/20200507-python-lb.png b/content/en/blog/news/20200507-python-lb.png
deleted file mode 100644
index 89e710e..0000000
--- a/content/en/blog/news/20200507-python-lb.png
+++ /dev/null
Binary files differ
diff --git a/content/en/blog/news/20200507-python.md b/content/en/blog/news/20200507-python.md
deleted file mode 100644
index d4b3504..0000000
--- a/content/en/blog/news/20200507-python.md
+++ /dev/null
@@ -1,74 +0,0 @@
----
-date: 2020-05-07
-title: "A Python API for Ouroboros"
-linkTitle: "Python"
-description: "Python"
-author: Dimitri Staessens
----
-
-Support for other programming languages than C/C++ has been on my todo
-list for quite some time. The initial approach was using
-[SWIG](http://www.swig.org), but we found the conversion always
-clunky, it didn't completely work as we wanted to, and a while back we
-just decided to deprecate it. Apart from C/C++ we only had a [rust
-wrapper](https://github.com/chritchens/ouroboros-rs).
-
-Until now! I finally took the time to sink my teeth into the bindings
-for Python. I had some brief looks at the
-[ctypes](https://docs.python.org/3/library/ctypes.html) library a
-while back, but this time I looked into
-[cffi](https://cffi.readthedocs.io/en/latest/) and I was amazed at how
-simple it was to wrap the more difficult functions that manipulate
-blocks of memory (flow\_read, but definitely the async fevent() call).
-And now there is path towards a 'nice' Python API.
-
-Here is a taste of what the
-[oecho](https://ouroboros.rocks/cgit/ouroboros/tree/src/tools/oecho/oecho.c)
-tool looks like in Python:
-
-```Python
-from ouroboros import *
-import argparse
-
-
-def client():
- f = flow_alloc("oecho")
- f.writeline("Hello, PyOuroboros!")
- print(f.readline())
- f.dealloc()
-
-
-def server():
- print("Starting the server.")
- while True:
- f = flow_accept()
- print("New flow.")
- line = f.readline()
- print("Message from client is " + line)
- f.writeline(line)
- f.dealloc()
-
-
-if __name__ == "__main__":
- parser = argparse.ArgumentParser(description='A simple echo client/server')
- parser.add_argument('-l', '--listen', help='run as a server', action='store_true')
- args = parser.parse_args()
- if args.listen is True:
- server()
- else:
- client()
-```
-
-I have more time in the next couple of days, so I expect this to be
-released after the weekend.
-
-Oh, and here is a picture of Ouroboros load-balancing between the C (top right)
-and Python (top left) implementations using the C and Python clients:
-
-{{<figure width="60%" src="/blog/news/20200507-python-lb.png">}}
-
-Can't wait to get the full API done!
-
-Cheers,
-
-Dimitri
diff --git a/content/en/blog/news/20201212-congestion-avoidance.md b/content/en/blog/news/20201212-congestion-avoidance.md
deleted file mode 100644
index f395a4f..0000000
--- a/content/en/blog/news/20201212-congestion-avoidance.md
+++ /dev/null
@@ -1,358 +0,0 @@
----
-date: 2020-12-12
-title: "Congestion avoidance in Ouroboros"
-linkTitle: "Congestion avoidance"
-description: "API for congestion avoidance and the Ouroboros MB-ECN algorithm"
-author: Dimitri Staessens
----
-
-The upcoming 0.18 version of the prototype has a bunch of big
-additions coming in, but the one that I'm most excited about is the
-addition of congestion avoidance. Now that the implementation is
-reaching its final shape, I just couldn't wait to share with the world
-what it looks like, so here I'll talk a bit about how it works.
-
-# Congestion avoidance
-
-Congestion avoidance is a mechanism for a network to avoid situations
-where the where the total traffic offered on a network element (link
-or node) systemically exceeds its capacity to handle this traffic
-(temporary overload due to traffic burstiness is not
-congestion). While bursts can be handled with adding buffers to
-network elements, the solution to congestion is to reduce the ingest
-of traffic at the network endpoints that are sources for the traffic
-over the congested element(s).
-
-I won't be going into too many details here, but there are two classes
-of mechanisms to inform traffic sources of congestion. One is Explicit
-Congestion Notification (ECN), where information is sent to the sender
-that its traffic is traversing a congested element. This is a solution
-that is, for instance, used by
-[DataCenter TCP (DCTCP)](https://tools.ietf.org/html/rfc8257),
-and is also supported by
-[QUIC](https://www.ietf.org/archive/id/draft-ietf-quic-recovery-33.txt).
-The other mechanism is implicit congestion detection, for instance by
-inferring congestion from packet loss (most TCP flavors) or increases
-in round-trip-time (TCP vegas).
-
-Once the sender is aware that its traffic is experiencing congestion,
-it has to take action. A simple (proven) way is the AIMD algorithm
-(Additive Increase, Multiplicative Decrease). When there is no sign of
-congestion, senders will steadily increase the amount of traffic they
-are sending (Additive Increase). When congestion is detected, they
-will quickly back off (Multiplicative Decrease). Usually this is
-augmented with a Slow Start (Multiplicative Increase) phase when the
-senders begins to send, to reach the maximum bandwidth more
-quickly. AIMD is used by TCP and QUIC (among others), and Ouroboros is
-no different. It's been proven to work mathematically.
-
-Now that the main ingredients are known, we can get to the
-preparation of the course.
-
-# Ouroboros congestion avoidance
-
-Congestion avoidance is in a very specific location in the Ouroboros
-architecture: at the ingest point of the network; it is the
-responsibility of the network, not the client application. In
-OSI-layer terminology, we could say that in Ouroboros, it's in "Layer
-3", not in "Layer 4".
-
-Congestion has to be dealt with for each individual traffic
-source/destination pair. In TCP this is called a connection, in
-Ouroboros we call it a _flow_.
-
-Ouroboros _flows_ are abstractions for the most basic of packet flows.
-A flow is defined by two endpoints and all that a flow guarantees is
-that there exist strings of bytes (packets) that, when offered at the
-ingress endpoint, have a non-zero chance of emerging at the egress
-endpoint. I say 'there exist' to allow, for instance, for maximum
-packet lengths. If it helps, think of flow endpoints as an IP:UDP
-address:port pair (but emphatically _NOT_ an IP:TCP address:port
-pair). There is no protocol assumed for the packets that traverse the
-flow. To the ingress and egress point, they are just a bunch of bytes.
-
-Now this has one major implication: We will need to add some
-information to these packets to infer congestion indirectly or
-explicitly. It should be obvious that explicit congestion notification
-is the simplest solution here. The Ouroboros prototype (currently)
-allows an octet for ECN.
-
-# Functional elements of the congestion API
-
-This section glances over the API in an informal way. A reference
-manual for the actual C API will be added after 0.18 is in the master
-branch of the prototype. The most important thing to keep in mind is
-that the architecture dictates this API, not any particular algorithm
-for congestion that we had in mind. In fact, to be perfectly honest,
-up front I wasn't 100% sure that congestion avoidance was feasible
-without adding additional fields fields to the DT protocol, such as a
-packet counter, or sending some feedback for measuring the Round-Trip
-Time (RTT). But as the algorithm below will show, it can be done.
-
-When flows are created, some state can be stored, which we call the
-_congestion context_. For now it's not important to know what state is
-stored in that context. If you're familiar with the inner workings of
-TCP, think of it as a black-box generalization of the _tranmission
-control block_. Both endpoints of a flow have such a congestion
-context.
-
-At the sender side, the congestion context is updated for each packet
-that is sent on the flow. Now, the only information that is known at
-the ingress is 1) that there is a packet to be sent, and 2) the length
-of this packet. The call at the ingress is thus:
-
-```
- update_context_at_sender <packet_length>
-```
-
-This function has to inform when it is allowed to actually send the
-packet, for instance by blocking for a certain period.
-
-At the receiver flow endpoint, we have a bit more information, 1) that
-a packet arrived, 2) the length of this packet, and 3) the value of
-the ECN octet associated with this packet. The call at the egress is
-thus:
-
-```
- update_context_at_receiver <packet_length, ecn>
-```
-
-Based on this information, receiver can decide if and when to update
-the sender. We are a bit more flexible in what can be sent, at this
-point, the prototype allows sending a packet (which we call
-FLOW_UPDATE) with a 16-bit Explicit Congestion Experienced (ECE) field.
-
-This implies that the sender can get this information from the
-receiver, so it knows 1) that such a packet arrived, and 2) the value
-of the ECE field.
-
-```
- update_context_at_sender_ece <ece>
-```
-
-That is the API for the endpoints. In each Ouroboros IPCP (think
-'router'), the value of the ECN field is updated.
-
-```
- update_ecn_in_router <ecn>
-```
-
-That's about as lean as as it gets. Now let's have a look at the
-algorithm that I designed and
-[implemented](https://ouroboros.rocks/cgit/ouroboros/tree/src/ipcpd/unicast/pol/ca-mb-ecn.c?h=be)
-as part of the prototype.
-
-# The Ouroboros multi-bit Forward ECN (MB-ECN) algorithm
-
-The algorithm is based on the workings of DataCenter TCP
-(DCTCP). Before I dig into the details, I will list the main
-differences, without any judgement.
-
-* The rate for additive increase is the same _constant_ for all flows
- (but could be made configurable for each network layer if
- needed). This is achieved by having a window that is independent of
- the Round-Trip Time (RTT). This may make it more fair, as congestion
- avoidance in DCTCP (and in most -- if not all -- TCP variants), is
- biased in favor of flows with smaller RTT[^1].
-
-* Because it is operating at the _flow_ level, it estimates the
- _actual_ bandwidth sent, including retransmissions, ACKs and what
- not from protocols operating on the flow. DCTCP estimates bandwidth
- based on which data offsets are acknowledged.
-
-* The algorithm uses 8 bits to indicate the queue depth in each
- router, instead of a single bit (due to IP header restrictions) for
- DCTCP.
-
-* MB-ECN sends a (small) out-of-band FLOW_UPDATE packet, DCTCP updates
- in-band TCP ECN/ECE bits in acknowledgment (ACK) packets. Note that
- DCTCP sends an immediate ACK with ECE set at the start of
- congestion, and sends an immediate ACK with ECE not set at the end
- of congestion. Otherwise, the ECE is set accordingly for any
- "regular" ACKs.
-
-* The MB-ECN algorithm can be implemented without the need for
- dividing numbers (apart from bit shifts). At least in the linux
- kernel implementation, DCTCP has a division for estimating the
- number of bytes that experienced congestion from the received acks
- with ECE bits set. I'm not sure this can be avoided[^2].
-
-Now, on to the MB-ECN algorithm. The values for some constants
-presented here have only been quickly tested; a _lot_ more scientific
-scrutiny is definitely needed here to make any statements about the
-performance of this algorithm. I will just explain the operation, and
-provide some very preliminary measurement results.
-
-First, like DCTCP, the routers mark the ECN field based on the
-outgoing queue depth. The current minimum queue depth to trigger and
-ECN is 16 packets (implemented as a bit shift of the queue size when
-writing a packet). We perform a logical OR with the previous value of
-the packet. If the width of the ECN field would be a single bit, this
-operation would be identical to DCTCP.
-
-At the _receiver_ side, the context maintains two state variables.
-
-* The floating sum (ECE) of the value of the (8-bit) ECN field over the
-last 2<sup>N</sup> packets is maintained (currently N=5, so 32
-packets). This is a value between 0 and 2<sup>8 + 5</sup> - 1.
-
-* The number of packets received during a period of congestion. This
- is just for internal use.
-
-If th ECE value is 0, no actions are performed at the receiver.
-
-If this ECE value becomes higher than 0 (there is some indication of
-start of congestion), an immediate FLOW_UPDATE is sent with this
-value. If a packet arrives with ECN = 0, the ECE value is _halved_.
-
-For every _increase_ in the ECE value, an immediate update is sent.
-
-If the ECE value remains stable or decreases, an update is sent only
-every M packets (currently, M = 8). This is what the counter is for.
-
-If the ECE value returns to 0 after a period of congestion, an
-immediate FLOW_UPDATE with the value 0 is sent.
-
-At the _sender_ side, the context keeps track of the actual congestion
-window. The sender keeps track of:
-
-* The current sender ECE value, which is updated when receiving a
- FLOW_UPDATE.
-
-* A bool indicating Slow Start, which is set to false when a
- FLOW_UPDATE arrives.
-
-* A sender_side packet counter. If this exceeds the value of N, the
- ECE is reset to 0. This protects the sender from lost FLOW_UPDATES
- that signal the end of congestion.
-
-* The window size multiplier W. For all flows, the window starts at a
- predetermined size, 2<sup>W</sup> ns. Currently W = 24, starting at
- about 16.8ms. The power of 2 allows us to perform operations on the
- window boundaries using bit shift arithmetic.
-
-* The current window start time (a single integer), based on the
- multiplier.
-
-* The number of packets sent in the current window. If this is below a
- PKT_MIN threshold before the start of a window period, the new
- window size is doubled. If this is above a PKT_MAX threshold before
- the start of a new window period, the new window size is halved. The
- thresholds are currently set to 8 and 64, scaling the window width
- to average sending ~36 packets in a window. When the window scales,
- the value for the allowed bytes to send in this window (see below)
- scales accordingly to keep the sender bandwidth at the same
- level. These values should be set with the value of N at the
- receiver side in mind.
-
-* The number bytes sent in this window. This is updated when sending
- each packet.
-
-* The number of allowed bytes in this window. This is calculated at
- the start of a new window: doubled at Slow Start, multiplied by a
- factor based on sender ECE when there is congestion, and increased
- by a fixed (scaled) value when there is no congestion outside of
- Slow Start. Currently, the scaled value is 64KiB per 16.8ms.
-
-There is one caveat: what if no FLOW_UPDATE packets arrive at all?
-DCTCP (being TCP) will timeout at the Retransmission TimeOut (RTO)
-value (since its ECE information comes from ACK packets), but this
-algorithm has no such mechanism at this point. The answer is that we
-currently do not monitor flow liveness from the flow allocator, but a
-Keepalive or Bidirectional Forwarding Detection (BFD)-like mechanism
-for flows should be added for QoS maintenance, and can serve to
-timeout the flow and reset it (meaning a full reset of the
-context).
-
-# MB-ECN in action
-
-From version 0.18 onwards[^3], the state of the flow -- including its
-congestion context -- can be monitored from the flow allocator
-statics:
-
-```bash
-$ cat /tmp/ouroboros/unicast.1/flow-allocator/66
-Flow established at: 2020-12-12 09:54:27
-Remote address: 99388
-Local endpoint ID: 2111124142794211394
-Remote endpoint ID: 4329936627666255938
-Sent (packets): 1605719
-Sent (bytes): 1605719000
-Send failed (packets): 0
-Send failed (bytes): 0
-Received (packets): 0
-Received (bytes): 0
-Receive failed (packets): 0
-Receive failed (bytes): 0
-Congestion avoidance algorithm: Multi-bit ECN
-Upstream congestion level: 0
-Upstream packet counter: 0
-Downstream congestion level: 48
-Downstream packet counter: 0
-Congestion window size (ns): 65536
-Packets in this window: 7
-Bytes in this window: 7000
-Max bytes in this window: 51349
-Current congestion regime: Multiplicative dec
-```
-
-I ran a quick test using the ocbr tool (modified to show stats every
-100ms) on a jFed testbed using 3 Linux servers (2 clients and a
-server) in star configuration with a 'router' (a 4th Linux server) in
-the center. The clients are connected to the 'router' over Gigabit
-Ethernet, the link between the 'router' and server is capped to 100Mb
-using ethtool[^4].
-
-Output from the ocbr tool:
-
-```
-Flow 64: 998 packets ( 998000 bytes)in 101 ms => 9880.8946 pps, 79.0472 Mbps
-Flow 64: 1001 packets ( 1001000 bytes)in 101 ms => 9904.6149 pps, 79.2369 Mbps
-Flow 64: 999 packets ( 999000 bytes)in 101 ms => 9882.8697 pps, 79.0630 Mbps
-Flow 64: 998 packets ( 998000 bytes)in 101 ms => 9880.0143 pps, 79.0401 Mbps
-Flow 64: 999 packets ( 999000 bytes)in 101 ms => 9887.6627 pps, 79.1013 Mbps
-Flow 64: 999 packets ( 999000 bytes)in 101 ms => 9891.0891 pps, 79.1287 Mbps
-New flow.
-Flow 64: 868 packets ( 868000 bytes)in 102 ms => 8490.6583 pps, 67.9253 Mbps
-Flow 65: 542 packets ( 542000 bytes)in 101 ms => 5356.5781 pps, 42.8526 Mbps
-Flow 64: 540 packets ( 540000 bytes)in 101 ms => 5341.5105 pps, 42.7321 Mbps
-Flow 65: 534 packets ( 534000 bytes)in 101 ms => 5285.6111 pps, 42.2849 Mbps
-Flow 64: 575 packets ( 575000 bytes)in 101 ms => 5691.4915 pps, 45.5319 Mbps
-Flow 65: 535 packets ( 535000 bytes)in 101 ms => 5291.0053 pps, 42.3280 Mbps
-Flow 64: 561 packets ( 561000 bytes)in 101 ms => 5554.3455 pps, 44.4348 Mbps
-Flow 65: 533 packets ( 533000 bytes)in 101 ms => 5272.0079 pps, 42.1761 Mbps
-Flow 64: 569 packets ( 569000 bytes)in 101 ms => 5631.3216 pps, 45.0506 Mbps
-```
-
-With only one client running, the flow is congestion controlled to
-about ~80Mb/s (indicating the queue limit at 16 packets may be a bit
-too low a bar). When the second client starts sending, both flows go
-quite quickly (at most 100ms) to a fair state of about 42 Mb/s.
-
-The IO graph from wireshark shows a reasonably stable profile (i.e. no
-big oscillations because of AIMD), when switching the flows on the
-clients on and off which is on par with DCTCP and not unexpected
-keeping in mind the similarities between the algorithms:
-
-{{<figure width="60%" src="/blog/news/20201212-congestion.png">}}
-
-The periodic "gaps" were not seen at the ocbr endpoint applicationand
-may have been due to tcpdump not capturing everything that those
-points, or possibly a bug somewhere.
-
-As said, a lot more work is needed analyzing this algorithm in terms
-of performance and stability[^5]. But I am feeling some excitement about its
-simplicity and -- dare I say it? -- elegance.
-
-Stay curious!
-
-Dimitri
-
-[^1]: Additive Increase increases the window size with 1 MSS each
- RTT. Slow Start doubles the window size each RTT.
-
-[^2]: I'm pretty sure the kernel developers would if they could.
-[^3]: Or the current "be" branch for the less patient.
-[^4]: Using Linux traffic control (```tc```) to limit traffic adds
- kernel queues and may interfere with MB-ECN.
-[^5]: And the prototype implementation as a whole!
diff --git a/content/en/blog/news/20201212-congestion.png b/content/en/blog/news/20201212-congestion.png
deleted file mode 100644
index 8e5b89f..0000000
--- a/content/en/blog/news/20201212-congestion.png
+++ /dev/null
Binary files differ
diff --git a/content/en/blog/news/20201219-congestion-avoidance.md b/content/en/blog/news/20201219-congestion-avoidance.md
deleted file mode 100644
index 7391091..0000000
--- a/content/en/blog/news/20201219-congestion-avoidance.md
+++ /dev/null
@@ -1,313 +0,0 @@
----
-date: 2020-12-19
-title: "Exploring Ouroboros with wireshark"
-linkTitle: "Exploring Ouroboros with wireshark "
-description: ""
-author: Dimitri Staessens
----
-
-I recently did some
-[quick tests](/blog/2020/12/12/congestion-avoidance-in-ouroboros/#mb-ecn-in-action)
-with the new congestion avoidance implementation, and thought to
-myself that it was a shame that Wireshark could not identify the
-Ouroboros flows, as that could give me some nicer graphs.
-
-Just to be clear, I think generic network tools like tcpdump and
-wireshark -- however informative and nice-to-use they are -- are a
-symptom of a lack of network security. The whole point of Ouroboros is
-that it is _intentionally_ designed to make it hard to analyze network
-traffic. Ouroboros is not a _network stack_[^1]: one can't simply dump
-a packet from the wire and derive the packet contents all the way up
-to the application by following identifiers for protocols and
-well-known ports. Using encryption to hide the network structure from
-the packet is shutting the door after the horse has bolted.
-
-To write an Ouroboros dissector, one needs to know the layered
-structure of the network at the capturing point at that specific point
-in time. It requires information from the Ouroboros runtime on the
-capturing machine and at the exact time of the capture, to correctly
-analyze traffic flows. I just wrote a dissector that works for my
-specific setup[^2].
-
-## Congestion avoidance test
-
-First, a quick refresh on the experiment layout, it's the the same
-4-node experiment as in the
-[previous post](/blog/2020/12/12/congestion-avoidance-in-ouroboros/#mb-ecn-in-action)
-
-{{<figure width="80%" src="/blog/news/20201219-exp.svg">}}
-
-I tried to draw the setup as best as I can in the figure above.
-
-There are 4 rack mounted 1U servers, connected over Gigabit Ethernet
-(GbE). Physically there is a big switch connecting all of them, but
-each "link" is separated as a port-based VLAN, so there are 3
-independent Ethernet segments. We create 3 ethernet _layers_, drawn
-in a lighter gray, with a single unicast layer -- consisting of 4
-unicast IPC processes (IPCPs) -- on top, drawn in a darker shade of
-gray. The link between the router and server has been capped to 100
-megabit/s using ```ethtool```[^3], and traffic is captured on the
-Ethernet NIC at the "Server" node using ```tcpdump```. All traffic is
-generated with our _constant bit rate_ ```ocbr``` tool trying to send
-about 80 Mbit/s of application-level throughput over the unicast
-layer.
-
-{{<figure width="80%" src="/blog/news/20201219-congestion.png">}}
-
-The graph above shows the bandwidth -- as captured on the congested
-100Mbit Ethernet link --, separated for each traffic flow, from the
-same pcap capture as in my previous post. A flow can be identified by
-a (destination address, endpoint ID)-pair, and since the destination
-is all the same, I could filter out the flows by simply selecting them
-based on the (64-bit) endpoint identifier.
-
-What you're looking at is that first, a flow (green starts), at around
-T=14s, a new flow enters (red) that stops at around T=24s. At around
-T=44s, another flow enters (blue) for about 14 seconds, and finally, a
-fourth (orange) flow enters at T=63s. The first (green) flow exits at
-around T=70s, leaving all the available bandwidth for the orange flow.
-
-The most important thing that I wanted to check is that when there are
-multiple flows, _if_ and _how fast_ they would converge to the same
-bandwidth. I'm not dissatisfied with the initial result: the answers
-seem to be _yes_ and _pretty fast_, with no observable oscillation to
-boot[^4]
-
-## Protocol overview
-
-Now, the wireshark dissector can be used to present some more details
-about the Ouroboros protocols in a familiar setting -- make it more
-accessible to some -- so, let's have a quick look.
-
-The Ouroboros network protocol has
-[5 fields](/docs/concepts/protocols/#network-protocol):
-
-```
-| DST | TTL | QOS | ECN | EID |
-```
-
-which we had to map to the Ethernet II protocol for our ipcpd-eth-dix
-implementation. The basic Ethernet II MAC (layer-2) header is pretty
-simple. It has 2 6-byte addresses (dst, src) and a 2-byte Ethertype.
-
-Since Ethernet doesn't do QoS or congestion, the main missing field
-here is the EID. We could have mapped it to the Ethertype, but we
-noticed that a lot of routers and switches drop unknown Ethertypes
-(and, for the purposes of this blog post here: it would have all but
-prevented to write the dissector). So we made the ethertype
-configurable per layer (so it can be set to a value that is not
-blocked by the network), and added 2 16-bit fields after the Ethernet
-MAC header for an Ouroboros layer:
-
-* Endpoint ID **eid**, which works just like in the unicast layer, to
- identify the N+1 application (in our case: a data transfer flow and
- a management flow for a unicast IPC process).
-
-* A length field **len**, which is needed because Ethernet NICs pad
- frames that are smaller than 64 bytes in length with trailing zeros
- (and we receive these zeros in our code). A length field is present
- in Ethernet type I, but since most "Layer 3" protocols also had a
- length field, it was re-purposed as Ethertype in Ethernet II. The
- value of the **len** field is the length of the **data** payload.
-
-The Ethernet layer that spans that 100Mbit link has Ethertype 0xA000
-set (which is the Ouroboros default), the Ouroboros plugin hooks into
-that ethertype.
-
-On top of the Ethernet layer, we have a unicast, layer with the 5
-fields specified above. The dissector also shows the contents of the
-flow allocation messages, which are (currently) sent to EID = 0.
-
-So, the protocol header as analysed in the experiment is, starting
-from the "wire":
-
-```
-+---------+---------+-----------+-----+-----+------
-| dst MAC | src MAC | Ethertype | eid | len | data /* ETH LAYER */
-+---------+---------+-----------+-----+-----+------
-
- <IF eid != 0 > /* eid == 0 -> ipcpd-eth flow allocator, */
- /* this is not analysed */
-
-+-----+-----+-----+-----+-----+------
-| DST | QOS | TTL | ECN | EID | DATA /* UNICAST LAYER */
-+-----+-----+-----+-----+-----+------
-
- <IF EID == 0> /* EID == 0 -> flow allocator */
-
-+-----+-------+-------+------+------+-----+-------------+
-| SRC | R_EID | S_EID | CODE | RESP | ECE | ... QOS ....| /* FA */
-+-----+-------+-------+------+------+-----+-------------+
-```
-
-## The network protocol
-
-{{<figure width="80%" src="/blog/news/20201219-ws-0.png">}}
-
-We will first have a look at packets captured around the point in time
-where the second (red) flow enters the network, about 14 seconds into
-the capture. The "N+1 Data" packets in the image above all belong to
-the green flow. The ```ocbr``` tool that we use sends 1000-byte data
-units that are zeroed-out. The packet captured on the wire is 1033
-bytes in length, so we have a protocol overhead of 33 bytes[^5]. We
-can break this down to:
-
-```
- ETHERNET II HEADER / 14 /
- 6 bytes Ethernet II dst
- 6 bytes Ethernet II src
- 2 bytes Ethernet II Ethertype
- OUROBOROS ETH-DIX HEADER / 4 /
- 2 bytes eid
- 2 byte len
- OUROBOROS UNICAST NETWORK HEADER / 15 /
- 4 bytes DST
- 1 byte QOS
- 1 byte TTL
- 1 byte ECN
- 8 bytes EID
- --- TOTAL / 33 /
- 33 bytes
-```
-
-The **Data (1019 bytes)** reported by wireshark is what Ethernet II
-sees as data, and thus includes the 19 bytes for the two Ouroboros
-headers. Note that DST length is configurable, currently up to 64
-bits.
-
-Now, let's have a brief look at the values for these fields. The
-**eid** is 65, this means that the _data-transfer flow_ established
-between the unicast IPCPs on the router and the server (_uni-r_ and
-_uni-s_ in our experiment figure) is identified by endpoint id 65 in
-the eth-dix IPCP on the Server machine. The **len** is 1015. Again, no
-surprises, this is the length of the Ouroboros unicast network header
-(15 bytes) + the 1000 bytes payload.
-
-**DST**, the destination address is 4135366193, a 32-bit address
-that was randomly assigned to the _uni-s_ IPCP. The QoS cube is 0,
-which is the default best-effort QoS class. *TTL* is 59. The starting
-TTL is configurable for a layer, the default is 60, and it was
-decremented by 1 in the _uni-r_ process on the router node. The packet
-experienced no congestion (**ECN** is 0), and the endpoint ID is a
-64-bit random number, 475...56. This endpoint ID identifies the flow
-endpoint for the ```ocbr``` server.
-
-## The flow request
-
-{{<figure width="80%" src="/blog/news/20201219-ws-1.png">}}
-
-The first "red" packet that was captured is the one for the flow
-allocation request, **FLOW REQUEST**[^6]. As mentioned before, the
-endpoint ID for the flow allocator is 0.
-
-A rather important remark is in place here: Ouroboros does not allow a
-UDP-like _datagram service_ from a layer. With which I mean: fabricate
-a packet with the correct destination address and some known EID and
-dump it in the network. All traffic that is offered to an Ouroboros
-layer requires a _flow_ to be allocated. This keeps the network layer
-in control its resources; the protocol details inside a layer are a
-secret to that layer.
-
-Now, what about that well-known EID=0 for the flow allocator (FA)? And
-the directory (Distributed Hash Table, DHT) for that matter, which is
-currently on EID=1? Doesn't that contradict the "no datagram service"
-statement above? Well, no. These components are part of the layer and
-are thus inside the layer. The DHT and FA are internal
-components. They are direct clients of the Data Transfer component.
-The globally known EID for these components is an absolute necessity
-since they need to be able to reach endpoints more than a hop
-(i.e. a flow in a lower layer) away.
-
-Let's now look inside that **FLOW REQUEST** message. We know it is a
-request from the **msg code** field[^7].
-
-This is the **only** packet that contains the source (and destination)
-address for this flow. There is a small twist, this value is decoded
-with different _endianness_ than the address in the DT protocol output
-(probably a bug in my dissector). The source address 232373199 in the
-FA message corresponds to the address 3485194509 in the DT protocol
-(and in the experiment image at the top): the source of our red flow
-is the "Client 2" node. Since this is a **FLOW REQUEST**, the remote
-endpoint id is not yet known, and set to 0[^8. The source endpoint ID
--- a 64-bit randomly generated value unique to the source IPC
-process[^9] -- is sent to the remote. The other fields are not
-relevant for this message.
-
-## The flow reply
-
-{{<figure width="80%" src="/blog/news/20201219-ws-2.png">}}
-
-Now, the **FLOW REPLY** message for our request. It originates our
-machine, so you will notice that the TTL is the starting value of 60.
-The destination address is what we sent in our original **FLOW
-REQUEST** -- add some endianness shenanigans. The **FLOW REPLY**
-mesage response sends the newly generated source endpoint[^10] ID, and
-this packet is the **only** packet that contains both endpoint IDs
-for this flow.
-
-## Congestion / flow update
-
-{{<figure width="80%" src="/blog/news/20201219-ws-3.png">}}
-
-Now a quick look at the congestion avoidance mechanisms. The
-information for the Additive Increase / Multiple Decrease algorithm is
-gathered from the **ECN** field in the packets. When both flows are
-active, they experience congestion since the requested bandwidth from
-the two ```ocbr``` clients (180Mbit) exceeds the 100Mbit link, and the
-figure above shows a packet marked with an ECN value of 11.
-
-{{<figure width="80%" src="/blog/news/20201219-ws-4.png">}}
-
-When the packets on a flow experience congestion, the flow allocator
-at the endpoint (the one our _uni-s_ IPCP) will update the sender with
-an **ECE** _Explicit Congestion Experienced_ value; in this case, 297.
-The higher this value, the quicker the sender will decrease its
-sending rate. The algorithm is explained a bit in my previous
-post.
-
-That's it for today's post, I hope it provides some new insights how
-Ouroboros works. As always, stay curious.
-
-Dimitri
-
-[^1]: Neither is RINA, for that matter.
-
-[^2]: This quick-and-dirty dissector is available in the
- ouroboros-eth-uni branch on my
- [github](https://github.com/dstaesse/wireshark/)
-
-[^3]: The prototype is able to handle Gigabit Ethernet, this is mostly
- to make the size of the capture files somewhat manageable.
-
-[^4]: Of course, this needs more thorough evaluation with more
- clients, distributions on the latency, different configurations
- for the FRCP protocol in the N+1 and all that jazz. I have,
- however, limited amounts of time to spare and am currently
- focusing on building and documenting the prototype and tools so
- that more thorough evaluations can be done if someone feels like
- doing them.
-
-[^5]: A 4-byte Ethernet Frame Check Sequence (FCS) is not included in
- the 'bytes on the wire'. As a reference, the minimum overhead
- for this kind of setup using UDP/IPv4 is 14 bytes Ethernet + 20
- bytes IPv4 + 8 bytes UDP = 42 bytes.
-
-[^6]: Actually, in a larger network there could be some DHT traffic
- related to resolving the address, but in such a small network,
- the DHT is basically a replicated database between all 4 nodes.
-
-[^7]: The reason it's not the first field in the protocol has to to
- with performance of memory alignment in x86 architectures.
-
-[^8]: We haven't optimised the FA protocol not to send fields it
- doesn't need for that particular message type -- yet.
-
-[^9]: Not the host machine, but that particular IPCP on the host
- machine. You can have multiple IPCPs for the same layer on the
- same machine, but in this case, expect correlation between their
- addresses. 64-bits / IPCP should provide some security against
- remotes trying to hack into another service on the same host by
- guessing EIDs.
-
-[^10]: This marks the point in space-time where I notice the
- misspelling in the dissector. \ No newline at end of file
diff --git a/content/en/blog/news/20201219-congestion.png b/content/en/blog/news/20201219-congestion.png
deleted file mode 100644
index 5675438..0000000
--- a/content/en/blog/news/20201219-congestion.png
+++ /dev/null
Binary files differ
diff --git a/content/en/blog/news/20201219-exp.svg b/content/en/blog/news/20201219-exp.svg
deleted file mode 100644
index 68e09e2..0000000
--- a/content/en/blog/news/20201219-exp.svg
+++ /dev/null
@@ -1 +0,0 @@
-<svg version="1.1" viewBox="0.0 0.0 960.0 540.0" fill="none" stroke="none" stroke-linecap="square" stroke-miterlimit="10" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"><clipPath id="p.0"><path d="m0 0l960.0 0l0 540.0l-960.0 0l0 -540.0z" clip-rule="nonzero"/></clipPath><g clip-path="url(#p.0)"><path fill="#ffffff" d="m0 0l960.0 0l0 540.0l-960.0 0z" fill-rule="evenodd"/><path fill="#000000" fill-opacity="0.0" d="m38.774277 61.569553l177.21785 0l0 61.608944l-177.21785 0z" fill-rule="evenodd"/><g transform="matrix(0.38029580052493434 0.0 0.0 0.3803020997375328 38.7742782152231 61.56955380577428)"><clipPath id="p.1"><path d="m0 0l466.0 0l0 162.0l-466.0 0z" clip-rule="evenodd"/></clipPath><image clip-path="url(#p.1)" fill="#000" width="466.0" height="162.0" x="0.0" y="0.0" preserveAspectRatio="none" xlink:href=""/></g><path fill="#eeeeee" d="m533.651 273.7519l9.834656 -39.34311l196.27557 -0.08998108l-9.834656 39.343094z" fill-rule="evenodd"/><path stroke="#595959" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m533.651 273.7519l9.834656 -39.34311l196.27557 -0.08998108l-9.834656 39.343094z" fill-rule="evenodd"/><path fill="#eeeeee" d="m155.37071 390.5674l-7.7573853 -39.79059l191.91487 -89.84723l7.7573853 39.79059z" fill-rule="evenodd"/><path stroke="#595959" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m155.37071 390.5674l-7.7573853 -39.79059l191.91487 -89.84723l7.7573853 39.79059z" fill-rule="evenodd"/><path fill="#eeeeee" d="m134.79247 142.88187l30.60698 -26.583649l173.6135 121.48129l-30.606995 26.583649z" fill-rule="evenodd"/><path stroke="#595959" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m134.79247 142.88187l30.60698 -26.583649l173.6135 121.48129l-30.606995 26.583649z" fill-rule="evenodd"/><path fill="#000000" fill-opacity="0.0" d="m34.805775 413.43307l177.21785 0l0 61.608948l-177.21785 0z" fill-rule="evenodd"/><g transform="matrix(0.38029580052493434 0.0 0.0 0.3803020997375328 34.805774278215225 413.43307086614175)"><clipPath id="p.2"><path d="m1.4210855E-14 0l466.0 0l0 162.0l-466.0 0z" clip-rule="evenodd"/></clipPath><image clip-path="url(#p.2)" fill="#000" width="466.0" height="162.0" x="0.0" y="0.0" preserveAspectRatio="none" xlink:href=""/></g><path fill="#000000" fill-opacity="0.0" d="m352.95276 221.85826l177.21783 0l0 61.608932l-177.21783 0z" fill-rule="evenodd"/><g transform="matrix(0.38029580052493434 0.0 0.0 0.3803020997375328 352.9527559055118 221.85826771653544)"><clipPath id="p.3"><path d="m0 0l466.0 0l0 162.0l-466.0 0z" clip-rule="evenodd"/></clipPath><image clip-path="url(#p.3)" fill="#000" width="466.0" height="162.0" x="0.0" y="0.0" preserveAspectRatio="none" xlink:href=""/></g><path fill="#000000" fill-opacity="0.0" d="m747.2677 219.44095l177.21783 0l0 61.608948l-177.21783 0z" fill-rule="evenodd"/><g transform="matrix(0.38029580052493434 0.0 0.0 0.3803020997375328 747.267716535433 219.44094488188975)"><clipPath id="p.4"><path d="m2.2737368E-13 0l466.0 0l0 162.0l-466.0 0z" clip-rule="evenodd"/></clipPath><image clip-path="url(#p.4)" fill="#000" width="466.0" height="162.0" x="0.0" y="0.0" preserveAspectRatio="none" xlink:href=""/></g><path fill="#000000" fill-opacity="0.0" d="m106.44095 20.603674l179.77951 0l0 20.976377l-179.77951 0z" fill-rule="evenodd"/><path fill="#000000" d="m126.4097 42.836174l1.765625 0.453125q-0.5625 2.171875 -2.0 3.328125q-1.4375 1.140625 -3.53125 1.140625q-2.15625 0 -3.515625 -0.875q-1.34375 -0.890625 -2.0625 -2.546875q-0.703125 -1.671875 -0.703125 -3.59375q0 -2.078125 0.796875 -3.625q0.796875 -1.5625 2.265625 -2.359375q1.484375 -0.8125 3.25 -0.8125q2.0 0 3.359375 1.015625q1.375 1.015625 1.90625 2.875l-1.734375 0.40625q-0.46875 -1.453125 -1.359375 -2.109375q-0.875 -0.671875 -2.203125 -0.671875q-1.546875 0 -2.578125 0.734375q-1.03125 0.734375 -1.453125 1.984375q-0.421875 1.234375 -0.421875 2.5625q0 1.703125 0.5 2.96875q0.5 1.265625 1.546875 1.90625q1.046875 0.625 2.265625 0.625q1.484375 0 2.515625 -0.859375q1.03125 -0.859375 1.390625 -2.546875zm3.6916962 4.6875l0 -13.359375l1.640625 0l0 13.359375l-1.640625 0zm4.191696 -11.46875l0 -1.890625l1.640625 0l0 1.890625l-1.640625 0zm0 11.46875l0 -9.671875l1.640625 0l0 9.671875l-1.640625 0zm10.769821 -3.109375l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625zm9.141342 5.765625l0 -9.671875l1.46875 0l0 1.375q1.0625 -1.59375 3.078125 -1.59375q0.875 0 1.609375 0.3125q0.734375 0.3125 1.09375 0.828125q0.375 0.5 0.515625 1.203125q0.09375 0.453125 0.09375 1.59375l0 5.953125l-1.640625 0l0 -5.890625q0 -1.0 -0.203125 -1.484375q-0.1875 -0.5 -0.671875 -0.796875q-0.484375 -0.296875 -1.140625 -0.296875q-1.046875 0 -1.8125 0.671875q-0.75 0.65625 -0.75 2.515625l0 5.28125l-1.640625 0zm13.953842 -1.46875l0.234375 1.453125q-0.6875 0.140625 -1.234375 0.140625q-0.890625 0 -1.390625 -0.28125q-0.484375 -0.28125 -0.6875 -0.734375q-0.203125 -0.46875 -0.203125 -1.9375l0 -5.578125l-1.203125 0l0 -1.265625l1.203125 0l0 -2.390625l1.625 -0.984375l0 3.375l1.65625 0l0 1.265625l-1.65625 0l0 5.671875q0 0.6875 0.078125 0.890625q0.09375 0.203125 0.28125 0.328125q0.203125 0.109375 0.578125 0.109375q0.265625 0 0.71875 -0.0625zm12.507233 1.46875l-1.640625 0l0 -10.453125q-0.59375 0.5625 -1.5625 1.140625q-0.953125 0.5625 -1.71875 0.84375l0 -1.59375q1.375 -0.640625 2.40625 -1.5625q1.03125 -0.921875 1.453125 -1.78125l1.0625 0l0 13.40625z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m46.278214 389.63254l179.77953 0l0 20.97638l-179.77953 0z" fill-rule="evenodd"/><path fill="#000000" d="m66.24696 411.86505l1.765625 0.453125q-0.5625 2.171875 -2.0 3.328125q-1.4375 1.140625 -3.53125 1.140625q-2.15625 0 -3.515625 -0.875q-1.34375 -0.890625 -2.0625 -2.546875q-0.703125 -1.671875 -0.703125 -3.59375q0 -2.078125 0.796875 -3.625q0.796875 -1.5625 2.265625 -2.359375q1.484375 -0.8125 3.25 -0.8125q2.0 0 3.359375 1.015625q1.375 1.015625 1.90625 2.875l-1.734375 0.40625q-0.46875 -1.453125 -1.359375 -2.109375q-0.875 -0.671875 -2.203125 -0.671875q-1.546875 0 -2.578125 0.734375q-1.03125 0.734375 -1.453125 1.984375q-0.421875 1.234375 -0.421875 2.5625q0 1.703125 0.5 2.96875q0.5 1.265625 1.546875 1.90625q1.046875 0.625 2.265625 0.625q1.484375 0 2.515625 -0.859375q1.03125 -0.859375 1.390625 -2.546875zm3.6916962 4.6875l0 -13.359375l1.640625 0l0 13.359375l-1.640625 0zm4.191696 -11.46875l0 -1.890625l1.640625 0l0 1.890625l-1.640625 0zm0 11.46875l0 -9.671875l1.640625 0l0 9.671875l-1.640625 0zm10.769821 -3.109375l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625zm9.141342 5.765625l0 -9.671875l1.46875 0l0 1.375q1.0625 -1.59375 3.078125 -1.59375q0.875 0 1.609375 0.3125q0.734375 0.3125 1.09375 0.828125q0.375 0.5 0.515625 1.203125q0.09375 0.453125 0.09375 1.59375l0 5.953125l-1.640625 0l0 -5.890625q0 -1.0 -0.203125 -1.484375q-0.1875 -0.5 -0.671875 -0.796875q-0.484375 -0.296875 -1.140625 -0.296875q-1.046875 0 -1.8125 0.671875q-0.75 0.65625 -0.75 2.515625l0 5.28125l-1.640625 0zm13.953842 -1.46875l0.234375 1.453125q-0.6875 0.140625 -1.234375 0.140625q-0.890625 0 -1.390625 -0.28125q-0.484375 -0.28125 -0.6875 -0.734375q-0.203125 -0.46875 -0.203125 -1.9375l0 -5.578125l-1.203125 0l0 -1.265625l1.203125 0l0 -2.390625l1.625 -0.984375l0 3.375l1.65625 0l0 1.265625l-1.65625 0l0 5.671875q0 0.6875 0.078125 0.890625q0.09375 0.203125 0.28125 0.328125q0.203125 0.109375 0.578125 0.109375q0.265625 0 0.71875 -0.0625zm14.944733 -0.109375l0 1.578125l-8.828125 0q-0.015625 -0.59375 0.1875 -1.140625q0.34375 -0.90625 1.078125 -1.78125q0.75 -0.875 2.15625 -2.015625q2.171875 -1.78125 2.9375 -2.828125q0.765625 -1.046875 0.765625 -1.96875q0 -0.984375 -0.703125 -1.640625q-0.6875 -0.671875 -1.8125 -0.671875q-1.1875 0 -1.90625 0.71875q-0.703125 0.703125 -0.703125 1.953125l-1.6875 -0.171875q0.171875 -1.890625 1.296875 -2.875q1.140625 -0.984375 3.03125 -0.984375q1.921875 0 3.046875 1.0625q1.125 1.0625 1.125 2.640625q0 0.796875 -0.328125 1.578125q-0.328125 0.78125 -1.09375 1.640625q-0.75 0.84375 -2.53125 2.34375q-1.46875 1.234375 -1.890625 1.6875q-0.421875 0.4375 -0.6875 0.875l6.546875 0z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m393.60892 176.04724l108.62991 0l0 20.97638l-108.62991 0z" fill-rule="evenodd"/><path fill="#000000" d="m404.07767 202.96724l0 -13.359375l5.921875 0q1.78125 0 2.703125 0.359375q0.9375 0.359375 1.484375 1.28125q0.5625 0.90625 0.5625 2.015625q0 1.40625 -0.921875 2.390625q-0.921875 0.96875 -2.84375 1.234375q0.703125 0.34375 1.078125 0.671875q0.765625 0.703125 1.453125 1.765625l2.328125 3.640625l-2.21875 0l-1.765625 -2.78125q-0.78125 -1.203125 -1.28125 -1.828125q-0.5 -0.640625 -0.90625 -0.890625q-0.390625 -0.265625 -0.796875 -0.359375q-0.296875 -0.078125 -0.984375 -0.078125l-2.046875 0l0 5.9375l-1.765625 0zm1.765625 -7.453125l3.796875 0q1.21875 0 1.890625 -0.25q0.6875 -0.265625 1.046875 -0.8125q0.359375 -0.546875 0.359375 -1.1875q0 -0.953125 -0.6875 -1.5625q-0.6875 -0.609375 -2.1875 -0.609375l-4.21875 0l0 4.421875zm10.863586 2.609375q0 -2.6875 1.484375 -3.96875q1.25 -1.078125 3.046875 -1.078125q2.0 0 3.265625 1.3125q1.265625 1.296875 1.265625 3.609375q0 1.859375 -0.5625 2.9375q-0.5625 1.0625 -1.640625 1.65625q-1.0625 0.59375 -2.328125 0.59375q-2.03125 0 -3.28125 -1.296875q-1.25 -1.3125 -1.25 -3.765625zm1.6875 0q0 1.859375 0.796875 2.796875q0.8125 0.921875 2.046875 0.921875q1.21875 0 2.03125 -0.921875q0.8125 -0.9375 0.8125 -2.84375q0 -1.796875 -0.8125 -2.71875q-0.8125 -0.921875 -2.03125 -0.921875q-1.234375 0 -2.046875 0.921875q-0.796875 0.90625 -0.796875 2.765625zm15.625702 4.84375l0 -1.421875q-1.125 1.640625 -3.0625 1.640625q-0.859375 0 -1.609375 -0.328125q-0.734375 -0.328125 -1.09375 -0.828125q-0.359375 -0.5 -0.5 -1.21875q-0.109375 -0.46875 -0.109375 -1.53125l0 -5.984375l1.640625 0l0 5.359375q0 1.28125 0.109375 1.734375q0.15625 0.640625 0.65625 1.015625q0.5 0.375 1.234375 0.375q0.734375 0 1.375 -0.375q0.65625 -0.390625 0.921875 -1.03125q0.265625 -0.65625 0.265625 -1.890625l0 -5.1875l1.640625 0l0 9.671875l-1.46875 0zm7.6257324 -1.46875l0.234375 1.453125q-0.6875 0.140625 -1.234375 0.140625q-0.890625 0 -1.390625 -0.28125q-0.484375 -0.28125 -0.6875 -0.734375q-0.203125 -0.46875 -0.203125 -1.9375l0 -5.578125l-1.203125 0l0 -1.265625l1.203125 0l0 -2.390625l1.625 -0.984375l0 3.375l1.65625 0l0 1.265625l-1.65625 0l0 5.671875q0 0.6875 0.078125 0.890625q0.09375 0.203125 0.28125 0.328125q0.203125 0.109375 0.578125 0.109375q0.265625 0 0.71875 -0.0625zm8.230164 -1.640625l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625zm9.125732 5.765625l0 -9.671875l1.46875 0l0 1.46875q0.5625 -1.03125 1.03125 -1.359375q0.484375 -0.328125 1.0625 -0.328125q0.828125 0 1.6875 0.53125l-0.5625 1.515625q-0.609375 -0.359375 -1.203125 -0.359375q-0.546875 0 -0.96875 0.328125q-0.421875 0.328125 -0.609375 0.890625q-0.28125 0.875 -0.28125 1.921875l0 5.0625l-1.625 0z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m767.40155 188.38321l179.77954 0l0 20.976364l-179.77954 0z" fill-rule="evenodd"/><path fill="#000000" d="m777.2453 211.00633l1.65625 -0.140625q0.125 1.0 0.546875 1.640625q0.4375 0.640625 1.34375 1.046875q0.921875 0.390625 2.0625 0.390625q1.0 0 1.78125 -0.296875q0.78125 -0.296875 1.15625 -0.8125q0.375 -0.53125 0.375 -1.15625q0 -0.625 -0.375 -1.09375q-0.359375 -0.46875 -1.1875 -0.796875q-0.546875 -0.203125 -2.390625 -0.640625q-1.828125 -0.453125 -2.5625 -0.84375q-0.96875 -0.5 -1.4375 -1.234375q-0.46875 -0.75 -0.46875 -1.671875q0 -1.0 0.578125 -1.875q0.578125 -0.890625 1.671875 -1.34375q1.109375 -0.453125 2.453125 -0.453125q1.484375 0 2.609375 0.484375q1.140625 0.46875 1.75 1.40625q0.609375 0.921875 0.65625 2.09375l-1.6875 0.125q-0.140625 -1.265625 -0.9375 -1.90625q-0.78125 -0.65625 -2.3125 -0.65625q-1.609375 0 -2.34375 0.59375q-0.734375 0.59375 -0.734375 1.421875q0 0.71875 0.53125 1.171875q0.5 0.46875 2.65625 0.96875q2.15625 0.484375 2.953125 0.84375q1.171875 0.53125 1.71875 1.359375q0.5625 0.828125 0.5625 1.90625q0 1.0625 -0.609375 2.015625q-0.609375 0.9375 -1.75 1.46875q-1.140625 0.515625 -2.578125 0.515625q-1.8125 0 -3.046875 -0.53125q-1.21875 -0.53125 -1.921875 -1.59375q-0.6875 -1.0625 -0.71875 -2.40625zm19.459229 1.1875l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625zm9.125732 5.765625l0 -9.671875l1.46875 0l0 1.46875q0.5625 -1.03125 1.03125 -1.359375q0.484375 -0.328125 1.0625 -0.328125q0.828125 0 1.6875 0.53125l-0.5625 1.515625q-0.609375 -0.359375 -1.203125 -0.359375q-0.546875 0 -0.96875 0.328125q-0.421875 0.328125 -0.609375 0.890625q-0.28125 0.875 -0.28125 1.921875l0 5.0625l-1.625 0zm8.9157715 0l-3.6875 -9.671875l1.734375 0l2.078125 5.796875q0.328125 0.9375 0.625 1.9375q0.203125 -0.765625 0.609375 -1.828125l2.140625 -5.90625l1.6875 0l-3.65625 9.671875l-1.53125 0zm13.265625 -3.109375l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625zm9.125732 5.765625l0 -9.671875l1.46875 0l0 1.46875q0.5625 -1.03125 1.03125 -1.359375q0.484375 -0.328125 1.0625 -0.328125q0.828125 0 1.6875 0.53125l-0.5625 1.515625q-0.609375 -0.359375 -1.203125 -0.359375q-0.546875 0 -0.96875 0.328125q-0.421875 0.328125 -0.609375 0.890625q-0.28125 0.875 -0.28125 1.921875l0 5.0625l-1.625 0z" fill-rule="nonzero"/><path fill="#eeeeee" d="m150.45145 137.80315l0 0c0 -3.5311432 3.144577 -6.393692 7.0236206 -6.393692l0 0c3.8790436 0 7.0236206 2.8625488 7.0236206 6.393692l0 0c0 3.5311432 -3.144577 6.3937073 -7.0236206 6.3937073l0 0c-3.8790436 0 -7.0236206 -2.862564 -7.0236206 -6.3937073z" fill-rule="evenodd"/><path stroke="#595959" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m150.45145 137.80315l0 0c0 -3.5311432 3.144577 -6.393692 7.0236206 -6.393692l0 0c3.8790436 0 7.0236206 2.8625488 7.0236206 6.393692l0 0c0 3.5311432 -3.144577 6.3937073 -7.0236206 6.3937073l0 0c-3.8790436 0 -7.0236206 -2.862564 -7.0236206 -6.3937073z" fill-rule="evenodd"/><path fill="#eeeeee" d="m306.9134 238.70341l0 0c0 -3.5311432 3.1445923 -6.3937073 7.0236206 -6.3937073l0 0c3.8790283 0 7.0236206 2.862564 7.0236206 6.3937073l0 0c0 3.5311432 -3.1445923 6.393692 -7.0236206 6.393692l0 0c-3.8790283 0 -7.0236206 -2.8625488 -7.0236206 -6.393692z" fill-rule="evenodd"/><path stroke="#595959" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m306.9134 238.70341l0 0c0 -3.5311432 3.1445923 -6.3937073 7.0236206 -6.3937073l0 0c3.8790283 0 7.0236206 2.862564 7.0236206 6.3937073l0 0c0 3.5311432 -3.1445923 6.393692 -7.0236206 6.393692l0 0c-3.8790283 0 -7.0236206 -2.8625488 -7.0236206 -6.393692z" fill-rule="evenodd"/><path fill="#eeeeee" d="m181.2021 358.021l0 0c0 -3.531128 3.144577 -6.3937073 7.0236206 -6.3937073l0 0c3.8790436 0 7.0236206 2.8625793 7.0236206 6.3937073l0 0c0 3.5311584 -3.144577 6.3937073 -7.0236206 6.3937073l0 0c-3.8790436 0 -7.0236206 -2.8625488 -7.0236206 -6.3937073z" fill-rule="evenodd"/><path stroke="#595959" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m181.2021 358.021l0 0c0 -3.531128 3.144577 -6.3937073 7.0236206 -6.3937073l0 0c3.8790436 0 7.0236206 2.8625793 7.0236206 6.3937073l0 0c0 3.5311584 -3.144577 6.3937073 -7.0236206 6.3937073l0 0c-3.8790436 0 -7.0236206 -2.8625488 -7.0236206 -6.3937073z" fill-rule="evenodd"/><path fill="#eeeeee" d="m320.96063 289.8609l0 0c0 -3.5311584 3.1445923 -6.3937073 7.0236206 -6.3937073l0 0c3.8790283 0 7.0236206 2.8625488 7.0236206 6.3937073l0 0c0 3.531128 -3.1445923 6.3937073 -7.0236206 6.3937073l0 0c-3.8790283 0 -7.0236206 -2.8625793 -7.0236206 -6.3937073z" fill-rule="evenodd"/><path stroke="#595959" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m320.96063 289.8609l0 0c0 -3.5311584 3.1445923 -6.3937073 7.0236206 -6.3937073l0 0c3.8790283 0 7.0236206 2.8625488 7.0236206 6.3937073l0 0c0 3.531128 -3.1445923 6.3937073 -7.0236206 6.3937073l0 0c-3.8790283 0 -7.0236206 -2.8625793 -7.0236206 -6.3937073z" fill-rule="evenodd"/><path fill="#eeeeee" d="m552.49866 252.66273l0 0c0 -3.5311432 3.1445923 -6.3937073 7.0236816 -6.3937073l0 0c3.8790283 0 7.0236206 2.862564 7.0236206 6.3937073l0 0c0 3.5311432 -3.1445923 6.393692 -7.0236206 6.393692l0 0c-3.8790894 0 -7.0236816 -2.8625488 -7.0236816 -6.393692z" fill-rule="evenodd"/><path stroke="#595959" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m552.49866 252.66273l0 0c0 -3.5311432 3.1445923 -6.3937073 7.0236816 -6.3937073l0 0c3.8790283 0 7.0236206 2.862564 7.0236206 6.3937073l0 0c0 3.5311432 -3.1445923 6.393692 -7.0236206 6.393692l0 0c-3.8790894 0 -7.0236816 -2.8625488 -7.0236816 -6.393692z" fill-rule="evenodd"/><path fill="#eeeeee" d="m706.7769 256.0971l0 0c0 -3.5311432 3.1445923 -6.393692 7.0236206 -6.393692l0 0c3.8790283 0 7.0236206 2.8625488 7.0236206 6.393692l0 0c0 3.5311584 -3.1445923 6.3937073 -7.0236206 6.3937073l0 0c-3.8790283 0 -7.0236206 -2.8625488 -7.0236206 -6.3937073z" fill-rule="evenodd"/><path stroke="#595959" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m706.7769 256.0971l0 0c0 -3.5311432 3.1445923 -6.393692 7.0236206 -6.393692l0 0c3.8790283 0 7.0236206 2.8625488 7.0236206 6.393692l0 0c0 3.5311584 -3.1445923 6.3937073 -7.0236206 6.3937073l0 0c-3.8790283 0 -7.0236206 -2.8625488 -7.0236206 -6.3937073z" fill-rule="evenodd"/><path fill="#b7b7b7" d="m192.59055 48.380577l250.96063 80.29397l382.99216 27.393692l-12.173279 41.204727l-382.99472 -29.031494l-329.53806 158.16798l-35.585304 -41.514435l319.5512 -136.62993l-243.15486 -78.34646z" fill-rule="evenodd"/><path stroke="#595959" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m192.59055 48.380577l250.96063 80.29397l382.99216 27.393692l-12.173279 41.204727l-382.99472 -29.031494l-329.53806 158.16798l-35.585304 -41.514435l319.5512 -136.62993l-243.15486 -78.34646z" fill-rule="evenodd"/><path fill="#b7b7b7" d="m202.97113 73.85302l0 0c0 -6.7839737 6.338516 -12.283466 14.157486 -12.283466l0 0c7.8189545 0 14.157471 5.4994926 14.157471 12.283466l0 0c0 6.783966 -6.338516 12.283463 -14.157471 12.283463l0 0c-7.8189697 0 -14.157486 -5.4994965 -14.157486 -12.283463z" fill-rule="evenodd"/><path stroke="#595959" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m202.97113 73.85302l0 0c0 -6.7839737 6.338516 -12.283466 14.157486 -12.283466l0 0c7.8189545 0 14.157471 5.4994926 14.157471 12.283466l0 0c0 6.783966 -6.338516 12.283463 -14.157471 12.283463l0 0c-7.8189697 0 -14.157486 -5.4994965 -14.157486 -12.283463z" fill-rule="evenodd"/><path fill="#b7b7b7" d="m98.173225 293.33334l0 0c0 -6.783966 6.338524 -12.283478 14.157486 -12.283478l0 0c7.8189545 0 14.157478 5.4995117 14.157478 12.283478l0 0c0 6.783966 -6.338524 12.283447 -14.157478 12.283447l0 0c-7.818962 0 -14.157486 -5.499481 -14.157486 -12.283447z" fill-rule="evenodd"/><path stroke="#595959" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m98.173225 293.33334l0 0c0 -6.783966 6.338524 -12.283478 14.157486 -12.283478l0 0c7.8189545 0 14.157478 5.4995117 14.157478 12.283478l0 0c0 6.783966 -6.338524 12.283447 -14.157478 12.283447l0 0c-7.818962 0 -14.157486 -5.499481 -14.157486 -12.283447z" fill-rule="evenodd"/><path fill="#b7b7b7" d="m408.20996 146.43307l0 0c0 -6.7839813 6.3385315 -12.283463 14.157501 -12.283463l0 0c7.818939 0 14.157471 5.499481 14.157471 12.283463l0 0c0 6.783966 -6.3385315 12.283463 -14.157471 12.283463l0 0c-7.8189697 0 -14.157501 -5.4994965 -14.157501 -12.283463z" fill-rule="evenodd"/><path stroke="#595959" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m408.20996 146.43307l0 0c0 -6.7839813 6.3385315 -12.283463 14.157501 -12.283463l0 0c7.818939 0 14.157471 5.499481 14.157471 12.283463l0 0c0 6.783966 -6.3385315 12.283463 -14.157471 12.283463l0 0c-7.8189697 0 -14.157501 -5.4994965 -14.157501 -12.283463z" fill-rule="evenodd"/><path fill="#b7b7b7" d="m776.2992 176.09973l0 0c0 -6.783966 6.338562 -12.283463 14.157471 -12.283463l0 0c7.8189697 0 14.157532 5.4994965 14.157532 12.283463l0 0c0 6.7839813 -6.338562 12.283478 -14.157532 12.283478l0 0c-7.8189087 0 -14.157471 -5.4994965 -14.157471 -12.283478z" fill-rule="evenodd"/><path stroke="#595959" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m776.2992 176.09973l0 0c0 -6.783966 6.338562 -12.283463 14.157471 -12.283463l0 0c7.8189697 0 14.157532 5.4994965 14.157532 12.283463l0 0c0 6.7839813 -6.338562 12.283478 -14.157532 12.283478l0 0c-7.8189087 0 -14.157471 -5.4994965 -14.157471 -12.283478z" fill-rule="evenodd"/><path fill="#000000" fill-opacity="0.0" d="m112.05774 296.84622c51.919083 -24.242767 198.57217 -124.28302 311.51443 -145.45668c112.94229 -21.17366 305.11594 15.345581 366.13913 18.414703" fill-rule="evenodd"/><path stroke="#ff0000" stroke-width="4.0" stroke-linejoin="round" stroke-linecap="butt" d="m112.05774 296.84622c51.919083 -24.242767 198.57217 -124.28302 311.51443 -145.45668c112.94229 -21.17366 305.11594 15.345581 366.13913 18.414703" fill-rule="evenodd"/><path fill="#000000" fill-opacity="0.0" d="m121.191605 301.29767c51.919067 -24.242767 198.57219 -124.28302 311.5144 -145.45668c112.94229 -21.173676 305.11594 15.345581 366.13913 18.414688" fill-rule="evenodd"/><path stroke="#0000ff" stroke-width="4.0" stroke-linejoin="round" stroke-linecap="butt" d="m121.191605 301.29767c51.919067 -24.242767 198.57219 -124.28302 311.5144 -145.45668c112.94229 -21.173676 305.11594 15.345581 366.13913 18.414688" fill-rule="evenodd"/><path fill="#000000" fill-opacity="0.0" d="m126.48819 310.78586c51.919067 -24.242767 198.57217 -124.28302 311.51443 -145.45668c112.94226 -21.173676 305.1159 15.345581 366.1391 18.414688" fill-rule="evenodd"/><path stroke="#ffd966" stroke-width="4.0" stroke-linejoin="round" stroke-linecap="butt" d="m126.48819 310.78586c51.919067 -24.242767 198.57217 -124.28302 311.51443 -145.45668c112.94226 -21.173676 305.1159 15.345581 366.1391 18.414688" fill-rule="evenodd"/><path fill="#000000" fill-opacity="0.0" d="m217.56168 71.79265c34.335083 12.277344 110.08005 56.340332 206.0105 73.66405c95.93045 17.3237 307.97684 25.231842 369.57217 30.278214" fill-rule="evenodd"/><path stroke="#00ff00" stroke-width="4.0" stroke-linejoin="round" stroke-linecap="butt" d="m217.56168 71.79265c34.335083 12.277344 110.08005 56.340332 206.0105 73.66405c95.93045 17.3237 307.97684 25.231842 369.57217 30.278214" fill-rule="evenodd"/><path fill="#000000" fill-opacity="0.0" d="m734.7743 384.86615l13.7323 -121.102356" fill-rule="evenodd"/><path stroke="#595959" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m734.7743 384.86615l13.056274 -115.140564" fill-rule="evenodd"/><path fill="#595959" stroke="#595959" stroke-width="1.0" stroke-linecap="butt" d="m749.47174 269.91168l-1.1298828 -4.6953125l-2.1525269 4.3230896z" fill-rule="evenodd"/><path fill="#000000" fill-opacity="0.0" d="m620.2336 386.11548l220.97638 0l0 20.97638l-220.97638 0z" fill-rule="evenodd"/><path fill="#000000" d="m668.6478 402.05493l0.234375 1.453125q-0.6875 0.140625 -1.234375 0.140625q-0.890625 0 -1.390625 -0.28125q-0.484375 -0.28125 -0.6875 -0.734375q-0.203125 -0.46875 -0.203125 -1.9375l0 -5.578125l-1.203125 0l0 -1.265625l1.203125 0l0 -2.390625l1.625 -0.984375l0 3.375l1.65625 0l0 1.265625l-1.65625 0l0 5.671875q0 0.6875 0.078125 0.890625q0.09375 0.203125 0.28125 0.328125q0.203125 0.109375 0.578125 0.109375q0.265625 0 0.71875 -0.0625zm7.9176636 -2.078125l1.609375 0.21875q-0.265625 1.65625 -1.359375 2.609375q-1.078125 0.9375 -2.671875 0.9375q-1.984375 0 -3.1875 -1.296875q-1.203125 -1.296875 -1.203125 -3.71875q0 -1.578125 0.515625 -2.75q0.515625 -1.171875 1.578125 -1.75q1.0625 -0.59375 2.3125 -0.59375q1.578125 0 2.578125 0.796875q1.0 0.796875 1.28125 2.265625l-1.59375 0.234375q-0.234375 -0.96875 -0.8125 -1.453125q-0.578125 -0.5 -1.390625 -0.5q-1.234375 0 -2.015625 0.890625q-0.78125 0.890625 -0.78125 2.8125q0 1.953125 0.75 2.84375q0.75 0.875 1.953125 0.875q0.96875 0 1.609375 -0.59375q0.65625 -0.59375 0.828125 -1.828125zm3.015625 7.25l0 -13.375l1.484375 0l0 1.25q0.53125 -0.734375 1.1875 -1.09375q0.671875 -0.375 1.625 -0.375q1.234375 0 2.171875 0.640625q0.953125 0.625 1.4375 1.796875q0.484375 1.15625 0.484375 2.546875q0 1.484375 -0.53125 2.671875q-0.53125 1.1875 -1.546875 1.828125q-1.015625 0.625 -2.140625 0.625q-0.8125 0 -1.46875 -0.34375q-0.65625 -0.34375 -1.0625 -0.875l0 4.703125l-1.640625 0zm1.484375 -8.484375q0 1.859375 0.75 2.765625q0.765625 0.890625 1.828125 0.890625q1.09375 0 1.875 -0.921875q0.78125 -0.9375 0.78125 -2.875q0 -1.84375 -0.765625 -2.765625q-0.75 -0.921875 -1.8125 -0.921875q-1.046875 0 -1.859375 0.984375q-0.796875 0.96875 -0.796875 2.84375zm15.156982 4.78125l0 -1.21875q-0.90625 1.4375 -2.703125 1.4375q-1.15625 0 -2.125 -0.640625q-0.96875 -0.640625 -1.5 -1.78125q-0.53125 -1.140625 -0.53125 -2.625q0 -1.453125 0.484375 -2.625q0.484375 -1.1875 1.4375 -1.8125q0.96875 -0.625 2.171875 -0.625q0.875 0 1.546875 0.375q0.6875 0.359375 1.109375 0.953125l0 -4.796875l1.640625 0l0 13.359375l-1.53125 0zm-5.171875 -4.828125q0 1.859375 0.78125 2.78125q0.78125 0.921875 1.84375 0.921875q1.078125 0 1.828125 -0.875q0.75 -0.890625 0.75 -2.6875q0 -1.984375 -0.765625 -2.90625q-0.765625 -0.9375 -1.890625 -0.9375q-1.078125 0 -1.8125 0.890625q-0.734375 0.890625 -0.734375 2.8125zm15.610046 4.828125l0 -1.421875q-1.125 1.640625 -3.0625 1.640625q-0.859375 0 -1.609375 -0.328125q-0.734375 -0.328125 -1.09375 -0.828125q-0.359375 -0.5 -0.5 -1.21875q-0.109375 -0.46875 -0.109375 -1.53125l0 -5.984375l1.640625 0l0 5.359375q0 1.28125 0.109375 1.734375q0.15625 0.640625 0.65625 1.015625q0.5 0.375 1.234375 0.375q0.734375 0 1.375 -0.375q0.65625 -0.390625 0.921875 -1.03125q0.265625 -0.65625 0.265625 -1.890625l0 -5.1875l1.640625 0l0 9.671875l-1.46875 0zm4.0476074 0l0 -9.671875l1.46875 0l0 1.359375q0.453125 -0.71875 1.203125 -1.140625q0.765625 -0.4375 1.71875 -0.4375q1.078125 0 1.765625 0.453125q0.6875 0.4375 0.96875 1.234375q1.15625 -1.6875 2.984375 -1.6875q1.453125 0 2.21875 0.796875q0.78125 0.796875 0.78125 2.453125l0 6.640625l-1.640625 0l0 -6.09375q0 -0.984375 -0.15625 -1.40625q-0.15625 -0.4375 -0.578125 -0.703125q-0.421875 -0.265625 -0.984375 -0.265625q-1.015625 0 -1.6875 0.6875q-0.671875 0.671875 -0.671875 2.15625l0 5.625l-1.640625 0l0 -6.28125q0 -1.09375 -0.40625 -1.640625q-0.40625 -0.546875 -1.3125 -0.546875q-0.6875 0 -1.28125 0.359375q-0.59375 0.359375 -0.859375 1.0625q-0.25 0.703125 -0.25 2.03125l0 5.015625l-1.640625 0zm15.5408325 3.703125l0 -13.375l1.484375 0l0 1.25q0.53125 -0.734375 1.1875 -1.09375q0.671875 -0.375 1.625 -0.375q1.234375 0 2.171875 0.640625q0.953125 0.625 1.4375 1.796875q0.484375 1.15625 0.484375 2.546875q0 1.484375 -0.53125 2.671875q-0.53125 1.1875 -1.546875 1.828125q-1.015625 0.625 -2.140625 0.625q-0.8125 0 -1.46875 -0.34375q-0.65625 -0.34375 -1.0625 -0.875l0 4.703125l-1.640625 0zm1.484375 -8.484375q0 1.859375 0.75 2.765625q0.765625 0.890625 1.828125 0.890625q1.09375 0 1.875 -0.921875q0.78125 -0.9375 0.78125 -2.875q0 -1.84375 -0.765625 -2.765625q-0.75 -0.921875 -1.8125 -0.921875q-1.046875 0 -1.859375 0.984375q-0.796875 0.96875 -0.796875 2.84375zm18.61731 0.765625l0 -1.640625l5.03125 0l0 1.640625l-5.03125 0zm6.8532715 -7.453125l0 -1.890625l1.640625 0l0 1.890625l-1.640625 0zm0 11.46875l0 -9.671875l1.640625 0l0 9.671875l-1.640625 0zm15.953125 -3.109375l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625zm12.719482 4.296875l0.234375 1.453125q-0.6875 0.140625 -1.234375 0.140625q-0.890625 0 -1.390625 -0.28125q-0.484375 -0.28125 -0.6875 -0.734375q-0.203125 -0.46875 -0.203125 -1.9375l0 -5.578125l-1.203125 0l0 -1.265625l1.203125 0l0 -2.390625l1.625 -0.984375l0 3.375l1.65625 0l0 1.265625l-1.65625 0l0 5.671875q0 0.6875 0.078125 0.890625q0.09375 0.203125 0.28125 0.328125q0.203125 0.109375 0.578125 0.109375q0.265625 0 0.71875 -0.0625zm1.6051636 1.46875l0 -13.359375l1.640625 0l0 4.796875q1.140625 -1.328125 2.890625 -1.328125q1.078125 0 1.859375 0.421875q0.796875 0.421875 1.140625 1.171875q0.34375 0.75 0.34375 2.171875l0 6.125l-1.640625 0l0 -6.125q0 -1.234375 -0.53125 -1.796875q-0.53125 -0.5625 -1.515625 -0.5625q-0.71875 0 -1.359375 0.390625q-0.640625 0.375 -0.921875 1.015625q-0.265625 0.640625 -0.265625 1.78125l0 5.296875l-1.640625 0zm9.922607 -6.59375q0 -2.359375 0.484375 -3.796875q0.484375 -1.453125 1.4375 -2.234375q0.96875 -0.78125 2.421875 -0.78125q1.078125 0 1.890625 0.4375q0.8125 0.421875 1.328125 1.25q0.53125 0.8125 0.828125 1.984375q0.3125 1.15625 0.3125 3.140625q0 2.359375 -0.484375 3.8125q-0.484375 1.4375 -1.453125 2.234375q-0.953125 0.78125 -2.421875 0.78125q-1.921875 0 -3.03125 -1.390625q-1.3125 -1.671875 -1.3125 -5.4375zm1.671875 0q0 3.296875 0.765625 4.390625q0.78125 1.078125 1.90625 1.078125q1.140625 0 1.90625 -1.09375q0.765625 -1.09375 0.765625 -4.375q0 -3.296875 -0.765625 -4.375q-0.765625 -1.078125 -1.921875 -1.078125q-1.125 0 -1.796875 0.953125q-0.859375 1.21875 -0.859375 4.5z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m118.301834 139.41995l179.77953 0l0 20.97638l-179.77953 0z" fill-rule="evenodd"/><path fill="#000000" d="m135.16121 163.23058l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625zm14.860092 5.765625l-1.640625 0l0 -10.453125q-0.59375 0.5625 -1.5625 1.140625q-0.953125 0.5625 -1.71875 0.84375l0 -1.59375q1.375 -0.640625 2.40625 -1.5625q1.03125 -0.921875 1.453125 -1.78125l1.0625 0l0 13.40625zm4.016342 -4.015625l0 -1.640625l5.03125 0l0 1.640625l-5.03125 0zm12.572052 4.015625l-1.640625 0l0 -10.453125q-0.59375 0.5625 -1.5625 1.140625q-0.953125 0.5625 -1.71875 0.84375l0 -1.59375q1.375 -0.640625 2.40625 -1.5625q1.03125 -0.921875 1.453125 -1.78125l1.0625 0l0 13.40625z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m284.47244 234.31627l58.92914 0l0 20.97638l-58.92914 0z" fill-rule="evenodd"/><path fill="#000000" d="m301.33182 258.1269l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625zm14.860077 5.765625l-1.640625 0l0 -10.453125q-0.59375 0.5625 -1.5625 1.140625q-0.953125 0.5625 -1.71875 0.84375l0 -1.59375q1.375 -0.640625 2.40625 -1.5625q1.03125 -0.921875 1.453125 -1.78125l1.0625 0l0 13.40625zm4.0163574 -4.015625l0 -1.640625l5.03125 0l0 1.640625l-5.03125 0zm6.837677 4.015625l0 -9.671875l1.46875 0l0 1.46875q0.5625 -1.03125 1.03125 -1.359375q0.484375 -0.328125 1.0625 -0.328125q0.828125 0 1.6875 0.53125l-0.5625 1.515625q-0.609375 -0.359375 -1.203125 -0.359375q-0.546875 0 -0.96875 0.328125q-0.421875 0.328125 -0.609375 0.890625q-0.28125 0.875 -0.28125 1.921875l0 5.0625l-1.625 0z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m306.9134 289.8071l58.92914 0l0 20.97638l-58.92914 0z" fill-rule="evenodd"/><path fill="#000000" d="m323.77277 313.6177l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625zm17.297577 4.1875l0 1.578125l-8.828125 0q-0.015625 -0.59375 0.1875 -1.140625q0.34375 -0.90625 1.078125 -1.78125q0.75 -0.875 2.15625 -2.015625q2.171875 -1.78125 2.9375 -2.828125q0.765625 -1.046875 0.765625 -1.96875q0 -0.984375 -0.703125 -1.640625q-0.6875 -0.671875 -1.8125 -0.671875q-1.1875 0 -1.90625 0.71875q-0.703125 0.703125 -0.703125 1.953125l-1.6875 -0.171875q0.171875 -1.890625 1.296875 -2.875q1.140625 -0.984375 3.03125 -0.984375q1.921875 0 3.046875 1.0625q1.125 1.0625 1.125 2.640625q0 0.796875 -0.328125 1.578125q-0.328125 0.78125 -1.09375 1.640625q-0.75 0.84375 -2.53125 2.34375q-1.46875 1.234375 -1.890625 1.6875q-0.421875 0.4375 -0.6875 0.875l6.546875 0zm1.5788574 -2.4375l0 -1.640625l5.03125 0l0 1.640625l-5.03125 0zm6.837677 4.015625l0 -9.671875l1.46875 0l0 1.46875q0.5625 -1.03125 1.03125 -1.359375q0.484375 -0.328125 1.0625 -0.328125q0.828125 0 1.6875 0.53125l-0.5625 1.515625q-0.609375 -0.359375 -1.203125 -0.359375q-0.546875 0 -0.96875 0.328125q-0.421875 0.328125 -0.609375 0.890625q-0.28125 0.875 -0.28125 1.921875l0 5.0625l-1.625 0z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m158.76115 366.53543l70.96063 0l0 20.97638l-70.96063 0z" fill-rule="evenodd"/><path fill="#000000" d="m175.62053 390.34607l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625zm17.297592 4.1875l0 1.578125l-8.828125 0q-0.015625 -0.59375 0.1875 -1.140625q0.34375 -0.90625 1.078125 -1.78125q0.75 -0.875 2.15625 -2.015625q2.171875 -1.78125 2.9375 -2.828125q0.765625 -1.046875 0.765625 -1.96875q0 -0.984375 -0.703125 -1.640625q-0.6875 -0.671875 -1.8125 -0.671875q-1.1875 0 -1.90625 0.71875q-0.703125 0.703125 -0.703125 1.953125l-1.6875 -0.171875q0.171875 -1.890625 1.296875 -2.875q1.140625 -0.984375 3.03125 -0.984375q1.921875 0 3.046875 1.0625q1.125 1.0625 1.125 2.640625q0 0.796875 -0.328125 1.578125q-0.328125 0.78125 -1.09375 1.640625q-0.75 0.84375 -2.53125 2.34375q-1.46875 1.234375 -1.890625 1.6875q-0.421875 0.4375 -0.6875 0.875l6.546875 0zm1.5788422 -2.4375l0 -1.640625l5.03125 0l0 1.640625l-5.03125 0zm15.009552 2.4375l0 1.578125l-8.828125 0q-0.015625 -0.59375 0.1875 -1.140625q0.34375 -0.90625 1.078125 -1.78125q0.75 -0.875 2.15625 -2.015625q2.171875 -1.78125 2.9375 -2.828125q0.765625 -1.046875 0.765625 -1.96875q0 -0.984375 -0.703125 -1.640625q-0.6875 -0.671875 -1.8125 -0.671875q-1.1875 0 -1.90625 0.71875q-0.703125 0.703125 -0.703125 1.953125l-1.6875 -0.171875q0.171875 -1.890625 1.296875 -2.875q1.140625 -0.984375 3.03125 -0.984375q1.921875 0 3.046875 1.0625q1.125 1.0625 1.125 2.640625q0 0.796875 -0.328125 1.578125q-0.328125 0.78125 -1.09375 1.640625q-0.75 0.84375 -2.53125 2.34375q-1.46875 1.234375 -1.890625 1.6875q-0.421875 0.4375 -0.6875 0.875l6.546875 0z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m529.4803 263.76248l58.92914 0l0 20.976349l-58.92914 0z" fill-rule="evenodd"/><path fill="#000000" d="m546.33966 287.5731l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625zm8.688232 2.234375l1.640625 -0.21875q0.28125 1.40625 0.953125 2.015625q0.6875 0.609375 1.65625 0.609375q1.15625 0 1.953125 -0.796875q0.796875 -0.796875 0.796875 -1.984375q0 -1.125 -0.734375 -1.859375q-0.734375 -0.734375 -1.875 -0.734375q-0.46875 0 -1.15625 0.171875l0.1875 -1.4375q0.15625 0.015625 0.265625 0.015625q1.046875 0 1.875 -0.546875q0.84375 -0.546875 0.84375 -1.671875q0 -0.90625 -0.609375 -1.5q-0.609375 -0.59375 -1.578125 -0.59375q-0.953125 0 -1.59375 0.609375q-0.640625 0.59375 -0.8125 1.796875l-1.640625 -0.296875q0.296875 -1.640625 1.359375 -2.546875q1.0625 -0.90625 2.65625 -0.90625q1.09375 0 2.0 0.46875q0.921875 0.46875 1.40625 1.28125q0.5 0.8125 0.5 1.71875q0 0.859375 -0.46875 1.578125q-0.46875 0.703125 -1.375 1.125q1.1875 0.28125 1.84375 1.140625q0.65625 0.859375 0.65625 2.15625q0 1.734375 -1.28125 2.953125q-1.265625 1.21875 -3.21875 1.21875q-1.765625 0 -2.921875 -1.046875q-1.15625 -1.046875 -1.328125 -2.71875zm10.188232 -0.484375l0 -1.640625l5.03125 0l0 1.640625l-5.03125 0zm6.8376465 4.015625l0 -9.671875l1.46875 0l0 1.46875q0.5625 -1.03125 1.03125 -1.359375q0.484375 -0.328125 1.0625 -0.328125q0.828125 0 1.6875 0.53125l-0.5625 1.515625q-0.609375 -0.359375 -1.203125 -0.359375q-0.546875 0 -0.96875 0.328125q-0.421875 0.328125 -0.609375 0.890625q-0.28125 0.875 -0.28125 1.921875l0 5.0625l-1.625 0z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m688.33856 259.5105l58.92914 0l0 20.97638l-58.92914 0z" fill-rule="evenodd"/><path fill="#000000" d="m705.19794 283.32114l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625zm8.688232 2.234375l1.640625 -0.21875q0.28125 1.40625 0.953125 2.015625q0.6875 0.609375 1.65625 0.609375q1.15625 0 1.953125 -0.796875q0.796875 -0.796875 0.796875 -1.984375q0 -1.125 -0.734375 -1.859375q-0.734375 -0.734375 -1.875 -0.734375q-0.46875 0 -1.15625 0.171875l0.1875 -1.4375q0.15625 0.015625 0.265625 0.015625q1.046875 0 1.875 -0.546875q0.84375 -0.546875 0.84375 -1.671875q0 -0.90625 -0.609375 -1.5q-0.609375 -0.59375 -1.578125 -0.59375q-0.953125 0 -1.59375 0.609375q-0.640625 0.59375 -0.8125 1.796875l-1.640625 -0.296875q0.296875 -1.640625 1.359375 -2.546875q1.0625 -0.90625 2.65625 -0.90625q1.09375 0 2.0 0.46875q0.921875 0.46875 1.40625 1.28125q0.5 0.8125 0.5 1.71875q0 0.859375 -0.46875 1.578125q-0.46875 0.703125 -1.375 1.125q1.1875 0.28125 1.84375 1.140625q0.65625 0.859375 0.65625 2.15625q0 1.734375 -1.28125 2.953125q-1.265625 1.21875 -3.21875 1.21875q-1.765625 0 -2.921875 -1.046875q-1.15625 -1.046875 -1.328125 -2.71875zm10.188232 -0.484375l0 -1.640625l5.03125 0l0 1.640625l-5.03125 0zm6.1970215 1.125l1.625 -0.25q0.125 0.96875 0.75 1.5q0.625 0.515625 1.75 0.515625q1.125 0 1.671875 -0.453125q0.546875 -0.46875 0.546875 -1.09375q0 -0.546875 -0.484375 -0.875q-0.328125 -0.21875 -1.671875 -0.546875q-1.8125 -0.46875 -2.515625 -0.796875q-0.6875 -0.328125 -1.046875 -0.90625q-0.359375 -0.59375 -0.359375 -1.3125q0 -0.640625 0.296875 -1.1875q0.296875 -0.5625 0.8125 -0.921875q0.375 -0.28125 1.03125 -0.46875q0.671875 -0.203125 1.421875 -0.203125q1.140625 0 2.0 0.328125q0.859375 0.328125 1.265625 0.890625q0.421875 0.5625 0.578125 1.5l-1.609375 0.21875q-0.109375 -0.75 -0.640625 -1.171875q-0.515625 -0.421875 -1.46875 -0.421875q-1.140625 0 -1.625 0.375q-0.46875 0.375 -0.46875 0.875q0 0.3125 0.1875 0.578125q0.203125 0.265625 0.640625 0.4375q0.234375 0.09375 1.4375 0.421875q1.75 0.453125 2.4375 0.75q0.6875 0.296875 1.078125 0.859375q0.390625 0.5625 0.390625 1.40625q0 0.828125 -0.484375 1.546875q-0.46875 0.71875 -1.375 1.125q-0.90625 0.390625 -2.046875 0.390625q-1.875 0 -2.875 -0.78125q-0.984375 -0.78125 -1.25 -2.328125z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m202.97113 24.351706l81.51181 0l0 20.976377l-81.51181 0z" fill-rule="evenodd"/><path fill="#000000" d="m219.53363 41.759895l0 -1.421875q-1.125 1.640625 -3.0625 1.640625q-0.859375 0 -1.609375 -0.328125q-0.734375 -0.328125 -1.09375 -0.828125q-0.359375 -0.5 -0.5 -1.21875q-0.109375 -0.46875 -0.109375 -1.53125l0 -5.984375l1.640625 0l0 5.359375q0 1.28125 0.109375 1.734375q0.15625 0.640625 0.65625 1.015625q0.5 0.375 1.234375 0.375q0.734375 0 1.375 -0.375q0.65625 -0.390625 0.921875 -1.03125q0.265625 -0.65625 0.265625 -1.890625l0 -5.1875l1.640625 0l0 9.671875l-1.46875 0zm4.047592 0l0 -9.671875l1.46875 0l0 1.375q1.0625 -1.5937519 3.078125 -1.5937519q0.875 0 1.609375 0.3125019q0.734375 0.3125 1.09375 0.828125q0.375 0.5 0.515625 1.203125q0.09375 0.453125 0.09375 1.59375l0 5.953125l-1.640625 0l0 -5.890625q0 -1.0 -0.203125 -1.484375q-0.1875 -0.5 -0.671875 -0.796875q-0.484375 -0.296875 -1.140625 -0.296875q-1.046875 0 -1.8125 0.671875q-0.75 0.65625 -0.75 2.515625l0 5.28125l-1.640625 0zm10.375717 -11.468752l0 -1.890625l1.640625 0l0 1.890625l-1.640625 0zm0 11.468752l0 -9.671875l1.640625 0l0 9.671875l-1.640625 0zm3.5041962 -4.015625l0 -1.640625l5.03125 0l0 1.640625l-5.03125 0zm12.572052 4.015625l-1.640625 0l0 -10.453127q-0.59375 0.5625 -1.5625 1.1406269q-0.953125 0.5625 -1.71875 0.84375l0 -1.5937519q1.375 -0.640625 2.40625 -1.5625q1.03125 -0.921875 1.453125 -1.78125l1.0625 0l0 13.406252z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m62.84777 234.31758l73.007866 0l0 20.97638l-73.007866 0z" fill-rule="evenodd"/><path fill="#000000" d="m79.41027 261.23758l0 -1.421875q-1.125 1.640625 -3.0625 1.640625q-0.859375 0 -1.609375 -0.328125q-0.734375 -0.328125 -1.09375 -0.828125q-0.359375 -0.5 -0.5 -1.21875q-0.109375 -0.46875 -0.109375 -1.53125l0 -5.984375l1.640625 0l0 5.359375q0 1.28125 0.109375 1.734375q0.15625 0.640625 0.65625 1.015625q0.5 0.375 1.234375 0.375q0.734375 0 1.375 -0.375q0.65625 -0.390625 0.921875 -1.03125q0.265625 -0.65625 0.265625 -1.890625l0 -5.1875l1.640625 0l0 9.671875l-1.46875 0zm4.047592 0l0 -9.671875l1.46875 0l0 1.375q1.0625 -1.59375 3.078125 -1.59375q0.875 0 1.609375 0.3125q0.734375 0.3125 1.09375 0.828125q0.375 0.5 0.515625 1.203125q0.09375 0.453125 0.09375 1.59375l0 5.953125l-1.640625 0l0 -5.890625q0 -1.0 -0.203125 -1.484375q-0.1875 -0.5 -0.671875 -0.796875q-0.484375 -0.296875 -1.140625 -0.296875q-1.046875 0 -1.8125 0.671875q-0.75 0.65625 -0.75 2.515625l0 5.28125l-1.640625 0zm10.375717 -11.46875l0 -1.890625l1.640625 0l0 1.890625l-1.640625 0zm0 11.46875l0 -9.671875l1.640625 0l0 9.671875l-1.640625 0zm3.5041962 -4.015625l0 -1.640625l5.03125 0l0 1.640625l-5.03125 0zm15.009552 2.4375l0 1.578125l-8.828125 0q-0.015625 -0.59375 0.1875 -1.140625q0.34375 -0.90625 1.078125 -1.78125q0.75 -0.875 2.15625 -2.015625q2.171875 -1.78125 2.9375 -2.828125q0.765625 -1.046875 0.765625 -1.96875q0 -0.984375 -0.703125 -1.640625q-0.6875 -0.671875 -1.8125 -0.671875q-1.1875 0 -1.90625 0.71875q-0.703125 0.703125 -0.703125 1.953125l-1.6875 -0.171875q0.171875 -1.890625 1.296875 -2.875q1.140625 -0.984375 3.03125 -0.984375q1.921875 0 3.046875 1.0625q1.125 1.0625 1.125 2.640625q0 0.796875 -0.328125 1.578125q-0.328125 0.78125 -1.09375 1.640625q-0.75 0.84375 -2.53125 2.34375q-1.46875 1.234375 -1.890625 1.6875q-0.421875 0.4375 -0.6875 0.875l6.546875 0z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m415.8924 86.13648l77.29132 0l0 20.97638l-77.29132 0z" fill-rule="evenodd"/><path fill="#000000" d="m432.4549 113.05648l0 -1.421875q-1.125 1.640625 -3.0625 1.640625q-0.859375 0 -1.609375 -0.328125q-0.734375 -0.328125 -1.09375 -0.828125q-0.359375 -0.5 -0.5 -1.21875q-0.109375 -0.46875 -0.109375 -1.53125l0 -5.984375l1.640625 0l0 5.359375q0 1.28125 0.109375 1.734375q0.15625 0.640625 0.65625 1.015625q0.5 0.375 1.234375 0.375q0.734375 0 1.375 -0.375q0.65625 -0.390625 0.921875 -1.03125q0.265625 -0.65625 0.265625 -1.890625l0 -5.1875l1.640625 0l0 9.671875l-1.46875 0zm4.047577 0l0 -9.671875l1.46875 0l0 1.375q1.0625 -1.59375 3.078125 -1.59375q0.875 0 1.609375 0.3125q0.734375 0.3125 1.09375 0.828125q0.375 0.5 0.515625 1.203125q0.09375 0.453125 0.09375 1.59375l0 5.953125l-1.640625 0l0 -5.890625q0 -1.0 -0.203125 -1.484375q-0.1875 -0.5 -0.671875 -0.796875q-0.484375 -0.296875 -1.140625 -0.296875q-1.046875 0 -1.8125 0.671875q-0.75 0.65625 -0.75 2.515625l0 5.28125l-1.640625 0zm10.375732 -11.46875l0 -1.890625l1.640625 0l0 1.890625l-1.640625 0zm0 11.46875l0 -9.671875l1.640625 0l0 9.671875l-1.640625 0zm3.504181 -4.015625l0 -1.640625l5.03125 0l0 1.640625l-5.03125 0zm6.837677 4.015625l0 -9.671875l1.46875 0l0 1.46875q0.5625 -1.03125 1.03125 -1.359375q0.484375 -0.328125 1.0625 -0.328125q0.828125 0 1.6875 0.53125l-0.5625 1.515625q-0.609375 -0.359375 -1.203125 -0.359375q-0.546875 0 -0.96875 0.328125q-0.421875 0.328125 -0.609375 0.890625q-0.28125 0.875 -0.28125 1.921875l0 5.0625l-1.625 0z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m767.40155 102.2021l77.29138 0l0 20.976372l-77.29138 0z" fill-rule="evenodd"/><path fill="#000000" d="m783.96405 129.1221l0 -1.421875q-1.125 1.640625 -3.0625 1.640625q-0.859375 0 -1.609375 -0.328125q-0.734375 -0.328125 -1.09375 -0.828125q-0.359375 -0.5 -0.5 -1.21875q-0.109375 -0.46875 -0.109375 -1.53125l0 -5.984375l1.640625 0l0 5.359375q0 1.28125 0.109375 1.734375q0.15625 0.640625 0.65625 1.015625q0.5 0.375 1.234375 0.375q0.734375 0 1.375 -0.375q0.65625 -0.390625 0.921875 -1.03125q0.265625 -0.65625 0.265625 -1.890625l0 -5.1875l1.640625 0l0 9.671875l-1.46875 0zm4.0476074 0l0 -9.671875l1.46875 0l0 1.375q1.0625 -1.59375 3.078125 -1.59375q0.875 0 1.609375 0.3125q0.734375 0.3125 1.09375 0.828125q0.375 0.5 0.515625 1.203125q0.09375 0.453125 0.09375 1.59375l0 5.953125l-1.640625 0l0 -5.890625q0 -1.0 -0.203125 -1.484375q-0.1875 -0.5 -0.671875 -0.796875q-0.484375 -0.296875 -1.140625 -0.296875q-1.046875 0 -1.8125 0.671875q-0.75 0.65625 -0.75 2.515625l0 5.28125l-1.640625 0zm10.375732 -11.46875l0 -1.890625l1.640625 0l0 1.890625l-1.640625 0zm0 11.46875l0 -9.671875l1.640625 0l0 9.671875l-1.640625 0zm3.5042114 -4.015625l0 -1.640625l5.03125 0l0 1.640625l-5.03125 0zm6.1970215 1.125l1.625 -0.25q0.125 0.96875 0.75 1.5q0.625 0.515625 1.75 0.515625q1.125 0 1.671875 -0.453125q0.546875 -0.46875 0.546875 -1.09375q0 -0.546875 -0.484375 -0.875q-0.328125 -0.21875 -1.671875 -0.546875q-1.8125 -0.46875 -2.515625 -0.796875q-0.6875 -0.328125 -1.046875 -0.90625q-0.359375 -0.59375 -0.359375 -1.3125q0 -0.640625 0.296875 -1.1875q0.296875 -0.5625 0.8125 -0.921875q0.375 -0.28125 1.03125 -0.46875q0.671875 -0.203125 1.421875 -0.203125q1.140625 0 2.0 0.328125q0.859375 0.328125 1.265625 0.890625q0.421875 0.5625 0.578125 1.5l-1.609375 0.21875q-0.109375 -0.75 -0.640625 -1.171875q-0.515625 -0.421875 -1.46875 -0.421875q-1.140625 0 -1.625 0.375q-0.46875 0.375 -0.46875 0.875q0 0.3125 0.1875 0.578125q0.203125 0.265625 0.640625 0.4375q0.234375 0.09375 1.4375 0.421875q1.75 0.453125 2.4375 0.75q0.6875 0.296875 1.078125 0.859375q0.390625 0.5625 0.390625 1.40625q0 0.828125 -0.484375 1.546875q-0.46875 0.71875 -1.375 1.125q-0.90625 0.390625 -2.046875 0.390625q-1.875 0 -2.875 -0.78125q-0.984375 -0.78125 -1.25 -2.328125z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m200.39896 8.128609l73.00787 0l0 31.842522l-73.00787 0z" fill-rule="evenodd"/><path fill="#000000" d="m209.7427 23.292984l0.703125 -0.09375q0.109375 0.59375 0.40625 0.859375q0.296875 0.265625 0.703125 0.265625q0.5 0 0.84375 -0.34375q0.34375 -0.34375 0.34375 -0.84375q0 -0.484375 -0.328125 -0.796875q-0.3125 -0.328125 -0.796875 -0.328125q-0.203125 0 -0.5 0.078125l0.078125 -0.609375q0.078125 0 0.125 0q0.4375 0 0.796875 -0.234375q0.359375 -0.234375 0.359375 -0.71875q0 -0.390625 -0.265625 -0.640625q-0.25 -0.25 -0.671875 -0.25q-0.40625 0 -0.6875 0.265625q-0.265625 0.25 -0.34375 0.765625l-0.703125 -0.125q0.125 -0.703125 0.578125 -1.09375q0.46875 -0.390625 1.140625 -0.390625q0.46875 0 0.859375 0.203125q0.40625 0.203125 0.609375 0.546875q0.21875 0.34375 0.21875 0.734375q0 0.375 -0.203125 0.6875q-0.203125 0.296875 -0.59375 0.46875q0.515625 0.125 0.796875 0.5q0.28125 0.359375 0.28125 0.921875q0 0.75 -0.546875 1.28125q-0.546875 0.515625 -1.390625 0.515625q-0.75 0 -1.25 -0.453125q-0.5 -0.453125 -0.5625 -1.171875zm4.4492188 0l0.703125 -0.09375q0.109375 0.59375 0.40625 0.859375q0.296875 0.265625 0.703125 0.265625q0.5 0 0.84375 -0.34375q0.34375 -0.34375 0.34375 -0.84375q0 -0.484375 -0.328125 -0.796875q-0.3125 -0.328125 -0.796875 -0.328125q-0.203125 0 -0.5 0.078125l0.078125 -0.609375q0.078125 0 0.125 0q0.4375 0 0.796875 -0.234375q0.359375 -0.234375 0.359375 -0.71875q0 -0.390625 -0.265625 -0.640625q-0.25 -0.25 -0.671875 -0.25q-0.40625 0 -0.6875 0.265625q-0.265625 0.25 -0.34375 0.765625l-0.703125 -0.125q0.125 -0.703125 0.578125 -1.09375q0.46875 -0.390625 1.140625 -0.390625q0.46875 0 0.859375 0.203125q0.40625 0.203125 0.609375 0.546875q0.21875 0.34375 0.21875 0.734375q0 0.375 -0.203125 0.6875q-0.203125 0.296875 -0.59375 0.46875q0.515625 0.125 0.796875 0.5q0.28125 0.359375 0.28125 0.921875q0 0.75 -0.546875 1.28125q-0.546875 0.515625 -1.390625 0.515625q-0.75 0 -1.25 -0.453125q-0.5 -0.453125 -0.5625 -1.171875zm4.4492188 0l0.703125 -0.09375q0.109375 0.59375 0.40625 0.859375q0.296875 0.265625 0.703125 0.265625q0.5 0 0.84375 -0.34375q0.34375 -0.34375 0.34375 -0.84375q0 -0.484375 -0.328125 -0.796875q-0.3125 -0.328125 -0.796875 -0.328125q-0.203125 0 -0.5 0.078125l0.078125 -0.609375q0.078125 0 0.125 0q0.4375 0 0.796875 -0.234375q0.359375 -0.234375 0.359375 -0.71875q0 -0.390625 -0.265625 -0.640625q-0.25 -0.25 -0.671875 -0.25q-0.40625 0 -0.6875 0.265625q-0.265625 0.25 -0.34375 0.765625l-0.703125 -0.125q0.125 -0.703125 0.578125 -1.09375q0.46875 -0.390625 1.140625 -0.390625q0.46875 0 0.859375 0.203125q0.40625 0.203125 0.609375 0.546875q0.21875 0.34375 0.21875 0.734375q0 0.375 -0.203125 0.6875q-0.203125 0.296875 -0.59375 0.46875q0.515625 0.125 0.796875 0.5q0.28125 0.359375 0.28125 0.921875q0 0.75 -0.546875 1.28125q-0.546875 0.515625 -1.390625 0.515625q-0.75 0 -1.25 -0.453125q-0.5 -0.453125 -0.5625 -1.171875zm4.4492188 0l0.703125 -0.09375q0.109375 0.59375 0.40625 0.859375q0.296875 0.265625 0.703125 0.265625q0.5 0 0.84375 -0.34375q0.34375 -0.34375 0.34375 -0.84375q0 -0.484375 -0.328125 -0.796875q-0.3125 -0.328125 -0.796875 -0.328125q-0.203125 0 -0.5 0.078125l0.078125 -0.609375q0.078125 0 0.125 0q0.4375 0 0.796875 -0.234375q0.359375 -0.234375 0.359375 -0.71875q0 -0.390625 -0.265625 -0.640625q-0.25 -0.25 -0.671875 -0.25q-0.40625 0 -0.6875 0.265625q-0.265625 0.25 -0.34375 0.765625l-0.703125 -0.125q0.125 -0.703125 0.578125 -1.09375q0.46875 -0.390625 1.140625 -0.390625q0.46875 0 0.859375 0.203125q0.40625 0.203125 0.609375 0.546875q0.21875 0.34375 0.21875 0.734375q0 0.375 -0.203125 0.6875q-0.203125 0.296875 -0.59375 0.46875q0.515625 0.125 0.796875 0.5q0.28125 0.359375 0.28125 0.921875q0 0.75 -0.546875 1.28125q-0.546875 0.515625 -1.390625 0.515625q-0.75 0 -1.25 -0.453125q-0.5 -0.453125 -0.5625 -1.171875zm4.4335938 0.015625l0.75 -0.0625q0.078125 0.53125 0.375 0.8125q0.296875 0.265625 0.71875 0.265625q0.515625 0 0.859375 -0.375q0.359375 -0.390625 0.359375 -1.015625q0 -0.609375 -0.34375 -0.953125q-0.34375 -0.34375 -0.890625 -0.34375q-0.328125 0 -0.609375 0.15625q-0.265625 0.140625 -0.421875 0.390625l-0.671875 -0.078125l0.5625 -2.953125l2.84375 0l0 0.671875l-2.28125 0l-0.3125 1.546875q0.515625 -0.359375 1.078125 -0.359375q0.75 0 1.265625 0.515625q0.515625 0.515625 0.515625 1.34375q0 0.765625 -0.453125 1.34375q-0.546875 0.6875 -1.5 0.6875q-0.78125 0 -1.28125 -0.4375q-0.484375 -0.4375 -0.5625 -1.15625zm4.4492188 0l0.75 -0.0625q0.078125 0.53125 0.375 0.8125q0.296875 0.265625 0.71875 0.265625q0.515625 0 0.859375 -0.375q0.359375 -0.390625 0.359375 -1.015625q0 -0.609375 -0.34375 -0.953125q-0.34375 -0.34375 -0.890625 -0.34375q-0.328125 0 -0.609375 0.15625q-0.265625 0.140625 -0.421875 0.390625l-0.671875 -0.078125l0.5625 -2.953125l2.84375 0l0 0.671875l-2.28125 0l-0.3125 1.546875q0.515625 -0.359375 1.078125 -0.359375q0.75 0 1.265625 0.515625q0.515625 0.515625 0.515625 1.34375q0 0.765625 -0.453125 1.34375q-0.546875 0.6875 -1.5 0.6875q-0.78125 0 -1.28125 -0.4375q-0.484375 -0.4375 -0.5625 -1.15625zm8.105469 -2.828125l-0.703125 0.0625q-0.09375 -0.421875 -0.265625 -0.609375q-0.28125 -0.296875 -0.703125 -0.296875q-0.328125 0 -0.59375 0.1875q-0.328125 0.234375 -0.515625 0.703125q-0.1875 0.46875 -0.203125 1.328125q0.25 -0.390625 0.609375 -0.578125q0.375 -0.1875 0.78125 -0.1875q0.703125 0 1.1875 0.515625q0.5 0.515625 0.5 1.34375q0 0.53125 -0.234375 1.0q-0.21875 0.46875 -0.625 0.71875q-0.40625 0.234375 -0.921875 0.234375q-0.890625 0 -1.453125 -0.640625q-0.546875 -0.65625 -0.546875 -2.140625q0 -1.65625 0.625 -2.40625q0.53125 -0.65625 1.4375 -0.65625q0.671875 0 1.09375 0.375q0.4375 0.375 0.53125 1.046875zm-2.875 2.46875q0 0.359375 0.15625 0.703125q0.15625 0.328125 0.421875 0.5q0.28125 0.171875 0.59375 0.171875q0.4375 0 0.75 -0.359375q0.328125 -0.359375 0.328125 -0.96875q0 -0.59375 -0.3125 -0.9375q-0.3125 -0.34375 -0.796875 -0.34375q-0.46875 0 -0.8125 0.34375q-0.328125 0.34375 -0.328125 0.890625zm7.3710938 1.1875l0 0.671875l-3.78125 0q-0.015625 -0.25 0.078125 -0.484375q0.140625 -0.390625 0.453125 -0.765625q0.328125 -0.375 0.921875 -0.875q0.9375 -0.765625 1.265625 -1.203125q0.328125 -0.453125 0.328125 -0.84375q0 -0.421875 -0.296875 -0.703125q-0.296875 -0.296875 -0.78125 -0.296875q-0.5 0 -0.8125 0.3125q-0.296875 0.296875 -0.3125 0.84375l-0.71875 -0.078125q0.078125 -0.8125 0.5625 -1.234375q0.484375 -0.421875 1.296875 -0.421875q0.828125 0 1.296875 0.453125q0.484375 0.453125 0.484375 1.140625q0 0.34375 -0.140625 0.671875q-0.140625 0.328125 -0.46875 0.703125q-0.3125 0.359375 -1.078125 1.0q-0.625 0.53125 -0.8125 0.71875q-0.171875 0.1875 -0.296875 0.390625l2.8125 0zm0.79296875 -4.3125l0 -0.671875l3.71875 0l0 0.546875q-0.546875 0.578125 -1.09375 1.546875q-0.53125 0.96875 -0.828125 1.984375q-0.203125 0.71875 -0.265625 1.578125l-0.71875 0q0 -0.671875 0.25 -1.625q0.265625 -0.96875 0.734375 -1.859375q0.484375 -0.890625 1.015625 -1.5l-2.8125 0zm8.058594 0.65625l-0.703125 0.0625q-0.09375 -0.421875 -0.265625 -0.609375q-0.28125 -0.296875 -0.703125 -0.296875q-0.328125 0 -0.59375 0.1875q-0.328125 0.234375 -0.515625 0.703125q-0.1875 0.46875 -0.203125 1.328125q0.25 -0.390625 0.609375 -0.578125q0.375 -0.1875 0.78125 -0.1875q0.703125 0 1.1875 0.515625q0.5 0.515625 0.5 1.34375q0 0.53125 -0.234375 1.0q-0.21875 0.46875 -0.625 0.71875q-0.40625 0.234375 -0.921875 0.234375q-0.890625 0 -1.453125 -0.640625q-0.546875 -0.65625 -0.546875 -2.140625q0 -1.65625 0.625 -2.40625q0.53125 -0.65625 1.4375 -0.65625q0.671875 0 1.09375 0.375q0.4375 0.375 0.53125 1.046875zm-2.875 2.46875q0 0.359375 0.15625 0.703125q0.15625 0.328125 0.421875 0.5q0.28125 0.171875 0.59375 0.171875q0.4375 0 0.75 -0.359375q0.328125 -0.359375 0.328125 -0.96875q0 -0.59375 -0.3125 -0.9375q-0.3125 -0.34375 -0.796875 -0.34375q-0.46875 0 -0.8125 0.34375q-0.328125 0.34375 -0.328125 0.890625z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m767.40155 92.53543l86.141785 0l0 26.834648l-86.141785 0z" fill-rule="evenodd"/><path fill="#000000" d="m778.9953 109.21543l0 -1.375l-2.484375 0l0 -0.640625l2.609375 -3.71875l0.578125 0l0 3.71875l0.765625 0l0 0.640625l-0.765625 0l0 1.375l-0.703125 0zm0 -2.015625l0 -2.578125l-1.796875 2.578125l1.796875 0zm4.8398438 2.015625l-0.703125 0l0 -4.484375q-0.25 0.25 -0.671875 0.5q-0.40625 0.234375 -0.734375 0.34375l0 -0.671875q0.59375 -0.28125 1.03125 -0.671875q0.4375 -0.390625 0.625 -0.765625l0.453125 0l0 5.75zm1.8085938 -1.515625l0.703125 -0.09375q0.109375 0.59375 0.40625 0.859375q0.296875 0.265625 0.703125 0.265625q0.5 0 0.84375 -0.34375q0.34375 -0.34375 0.34375 -0.84375q0 -0.484375 -0.328125 -0.796875q-0.3125 -0.328125 -0.796875 -0.328125q-0.203125 0 -0.5 0.078125l0.078125 -0.609375q0.078125 0 0.125 0q0.4375 0 0.796875 -0.234375q0.359375 -0.234375 0.359375 -0.71875q0 -0.390625 -0.265625 -0.640625q-0.25 -0.25 -0.671875 -0.25q-0.40625 0 -0.6875 0.265625q-0.265625 0.25 -0.34375 0.765625l-0.703125 -0.125q0.125 -0.703125 0.578125 -1.09375q0.46875 -0.390625 1.140625 -0.390625q0.46875 0 0.859375 0.203125q0.40625 0.203125 0.609375 0.546875q0.21875 0.34375 0.21875 0.734375q0 0.375 -0.203125 0.6875q-0.203125 0.296875 -0.59375 0.46875q0.515625 0.125 0.796875 0.5q0.28125 0.359375 0.28125 0.921875q0 0.75 -0.546875 1.28125q-0.546875 0.515625 -1.390625 0.515625q-0.75 0 -1.25 -0.453125q-0.5 -0.453125 -0.5625 -1.171875zm4.4335938 0.015625l0.75 -0.0625q0.078125 0.53125 0.375 0.8125q0.296875 0.265625 0.71875 0.265625q0.515625 0 0.859375 -0.375q0.359375 -0.390625 0.359375 -1.015625q0 -0.609375 -0.34375 -0.953125q-0.34375 -0.34375 -0.890625 -0.34375q-0.328125 0 -0.609375 0.15625q-0.265625 0.140625 -0.421875 0.390625l-0.671875 -0.078125l0.5625 -2.953125l2.84375 0l0 0.671875l-2.28125 0l-0.3125 1.546875q0.515625 -0.359375 1.078125 -0.359375q0.75 0 1.265625 0.515625q0.515625 0.515625 0.515625 1.34375q0 0.765625 -0.453125 1.34375q-0.546875 0.6875 -1.5 0.6875q-0.78125 0 -1.28125 -0.4375q-0.484375 -0.4375 -0.5625 -1.15625zm4.4648438 -0.015625l0.703125 -0.09375q0.109375 0.59375 0.40625 0.859375q0.296875 0.265625 0.703125 0.265625q0.5 0 0.84375 -0.34375q0.34375 -0.34375 0.34375 -0.84375q0 -0.484375 -0.328125 -0.796875q-0.3125 -0.328125 -0.796875 -0.328125q-0.203125 0 -0.5 0.078125l0.078125 -0.609375q0.078125 0 0.125 0q0.4375 0 0.796875 -0.234375q0.359375 -0.234375 0.359375 -0.71875q0 -0.390625 -0.265625 -0.640625q-0.25 -0.25 -0.671875 -0.25q-0.40625 0 -0.6875 0.265625q-0.265625 0.25 -0.34375 0.765625l-0.703125 -0.125q0.125 -0.703125 0.578125 -1.09375q0.46875 -0.390625 1.140625 -0.390625q0.46875 0 0.859375 0.203125q0.40625 0.203125 0.609375 0.546875q0.21875 0.34375 0.21875 0.734375q0 0.375 -0.203125 0.6875q-0.203125 0.296875 -0.59375 0.46875q0.515625 0.125 0.796875 0.5q0.28125 0.359375 0.28125 0.921875q0 0.75 -0.546875 1.28125q-0.546875 0.515625 -1.390625 0.515625q-0.75 0 -1.25 -0.453125q-0.5 -0.453125 -0.5625 -1.171875zm8.089844 -2.8125l-0.703125 0.0625q-0.09375 -0.421875 -0.265625 -0.609375q-0.28125 -0.296875 -0.703125 -0.296875q-0.328125 0 -0.59375 0.1875q-0.328125 0.234375 -0.515625 0.703125q-0.1875 0.46875 -0.203125 1.328125q0.25 -0.390625 0.609375 -0.578125q0.375 -0.1875 0.78125 -0.1875q0.703125 0 1.1875 0.515625q0.5 0.515625 0.5 1.34375q0 0.53125 -0.234375 1.0q-0.21875 0.46875 -0.625 0.71875q-0.40625 0.234375 -0.921875 0.234375q-0.890625 0 -1.453125 -0.640625q-0.546875 -0.65625 -0.546875 -2.140625q0 -1.65625 0.625 -2.40625q0.53125 -0.65625 1.4375 -0.65625q0.671875 0 1.09375 0.375q0.4375 0.375 0.53125 1.046875zm-2.875 2.46875q0 0.359375 0.15625 0.703125q0.15625 0.328125 0.421875 0.5q0.28125 0.171875 0.59375 0.171875q0.4375 0 0.75 -0.359375q0.328125 -0.359375 0.328125 -0.96875q0 -0.59375 -0.3125 -0.9375q-0.3125 -0.34375 -0.796875 -0.34375q-0.46875 0 -0.8125 0.34375q-0.328125 0.34375 -0.328125 0.890625zm7.3242188 -2.46875l-0.703125 0.0625q-0.09375 -0.421875 -0.265625 -0.609375q-0.28125 -0.296875 -0.703125 -0.296875q-0.328125 0 -0.59375 0.1875q-0.328125 0.234375 -0.515625 0.703125q-0.1875 0.46875 -0.203125 1.328125q0.25 -0.390625 0.609375 -0.578125q0.375 -0.1875 0.78125 -0.1875q0.703125 0 1.1875 0.515625q0.5 0.515625 0.5 1.34375q0 0.53125 -0.234375 1.0q-0.21875 0.46875 -0.625 0.71875q-0.40625 0.234375 -0.921875 0.234375q-0.890625 0 -1.453125 -0.640625q-0.546875 -0.65625 -0.546875 -2.140625q0 -1.65625 0.625 -2.40625q0.53125 -0.65625 1.4375 -0.65625q0.671875 0 1.09375 0.375q0.4375 0.375 0.53125 1.046875zm-2.875 2.46875q0 0.359375 0.15625 0.703125q0.15625 0.328125 0.421875 0.5q0.28125 0.171875 0.59375 0.171875q0.4375 0 0.75 -0.359375q0.328125 -0.359375 0.328125 -0.96875q0 -0.59375 -0.3125 -0.9375q-0.3125 -0.34375 -0.796875 -0.34375q-0.46875 0 -0.8125 0.34375q-0.328125 0.34375 -0.328125 0.890625zm6.3242188 1.859375l-0.703125 0l0 -4.484375q-0.25 0.25 -0.671875 0.5q-0.40625 0.234375 -0.734375 0.34375l0 -0.671875q0.59375 -0.28125 1.03125 -0.671875q0.4375 -0.390625 0.625 -0.765625l0.453125 0l0 5.75zm1.9023438 -1.328125l0.671875 -0.0625q0.09375 0.484375 0.328125 0.703125q0.25 0.203125 0.625 0.203125q0.328125 0 0.5625 -0.140625q0.25 -0.15625 0.40625 -0.40625q0.15625 -0.25 0.265625 -0.671875q0.109375 -0.421875 0.109375 -0.859375q0 -0.046875 -0.015625 -0.140625q-0.203125 0.34375 -0.578125 0.5625q-0.359375 0.203125 -0.78125 0.203125q-0.71875 0 -1.21875 -0.515625q-0.484375 -0.515625 -0.484375 -1.359375q0 -0.875 0.515625 -1.40625q0.515625 -0.53125 1.296875 -0.53125q0.546875 0 1.015625 0.296875q0.46875 0.296875 0.703125 0.859375q0.234375 0.5625 0.234375 1.609375q0 1.09375 -0.234375 1.75q-0.234375 0.65625 -0.703125 1.0q-0.46875 0.328125 -1.109375 0.328125q-0.671875 0 -1.09375 -0.375q-0.421875 -0.375 -0.515625 -1.046875zm2.875 -2.53125q0 -0.59375 -0.328125 -0.953125q-0.3125 -0.359375 -0.765625 -0.359375q-0.46875 0 -0.8125 0.390625q-0.34375 0.375 -0.34375 0.984375q0 0.546875 0.328125 0.890625q0.328125 0.34375 0.8125 0.34375q0.484375 0 0.796875 -0.34375q0.3125 -0.34375 0.3125 -0.953125zm1.4804688 2.34375l0.703125 -0.09375q0.109375 0.59375 0.40625 0.859375q0.296875 0.265625 0.703125 0.265625q0.5 0 0.84375 -0.34375q0.34375 -0.34375 0.34375 -0.84375q0 -0.484375 -0.328125 -0.796875q-0.3125 -0.328125 -0.796875 -0.328125q-0.203125 0 -0.5 0.078125l0.078125 -0.609375q0.078125 0 0.125 0q0.4375 0 0.796875 -0.234375q0.359375 -0.234375 0.359375 -0.71875q0 -0.390625 -0.265625 -0.640625q-0.25 -0.25 -0.671875 -0.25q-0.40625 0 -0.6875 0.265625q-0.265625 0.25 -0.34375 0.765625l-0.703125 -0.125q0.125 -0.703125 0.578125 -1.09375q0.46875 -0.390625 1.140625 -0.390625q0.46875 0 0.859375 0.203125q0.40625 0.203125 0.609375 0.546875q0.21875 0.34375 0.21875 0.734375q0 0.375 -0.203125 0.6875q-0.203125 0.296875 -0.59375 0.46875q0.515625 0.125 0.796875 0.5q0.28125 0.359375 0.28125 0.921875q0 0.75 -0.546875 1.28125q-0.546875 0.515625 -1.390625 0.515625q-0.75 0 -1.25 -0.453125q-0.5 -0.453125 -0.5625 -1.171875z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m62.84777 220.91864l142.33072 0l0 53.984253l-142.33072 0z" fill-rule="evenodd"/><path fill="#000000" d="m72.19152 236.08301l0.703125 -0.09375q0.109375 0.59375 0.40625 0.859375q0.296875 0.265625 0.703125 0.265625q0.5 0 0.84375 -0.34375q0.34375 -0.34375 0.34375 -0.84375q0 -0.484375 -0.328125 -0.796875q-0.3125 -0.328125 -0.796875 -0.328125q-0.203125 0 -0.5 0.078125l0.078125 -0.609375q0.078125 0 0.125 0q0.4375 0 0.796875 -0.234375q0.359375 -0.234375 0.359375 -0.71875q0 -0.390625 -0.265625 -0.640625q-0.25 -0.25 -0.671875 -0.25q-0.40625 0 -0.6875 0.265625q-0.265625 0.25 -0.34375 0.765625l-0.703125 -0.125q0.125 -0.703125 0.578125 -1.09375q0.46875 -0.390625 1.140625 -0.390625q0.46875 0 0.859375 0.203125q0.40625 0.203125 0.609375 0.546875q0.21875 0.34375 0.21875 0.734375q0 0.375 -0.203125 0.6875q-0.203125 0.296875 -0.59375 0.46875q0.515625 0.125 0.796875 0.5q0.28125 0.359375 0.28125 0.921875q0 0.75 -0.546875 1.28125q-0.546875 0.515625 -1.390625 0.515625q-0.75 0 -1.25 -0.453125q-0.5 -0.453125 -0.5625 -1.171875zm6.6992188 1.515625l0 -1.375l-2.484375 0l0 -0.640625l2.609375 -3.71875l0.578125 0l0 3.71875l0.765625 0l0 0.640625l-0.765625 0l0 1.375l-0.703125 0zm0 -2.015625l0 -2.578125l-1.796875 2.578125l1.796875 0zm3.2773438 -1.09375q-0.4375 -0.15625 -0.65625 -0.453125q-0.203125 -0.296875 -0.203125 -0.71875q0 -0.625 0.4375 -1.046875q0.453125 -0.421875 1.203125 -0.421875q0.75 0 1.203125 0.4375q0.453125 0.4375 0.453125 1.0625q0 0.390625 -0.203125 0.6875q-0.203125 0.296875 -0.640625 0.453125q0.53125 0.171875 0.796875 0.5625q0.28125 0.375 0.28125 0.90625q0 0.734375 -0.515625 1.234375q-0.515625 0.5 -1.359375 0.5q-0.859375 0 -1.375 -0.5q-0.515625 -0.5 -0.515625 -1.25q0 -0.5625 0.28125 -0.9375q0.28125 -0.375 0.8125 -0.515625zm-0.140625 -1.1875q0 0.40625 0.25 0.671875q0.265625 0.25 0.6875 0.25q0.40625 0 0.65625 -0.25q0.265625 -0.265625 0.265625 -0.640625q0 -0.375 -0.265625 -0.640625q-0.265625 -0.265625 -0.671875 -0.265625q-0.390625 0 -0.65625 0.265625q-0.265625 0.25 -0.265625 0.609375zm-0.234375 2.640625q0 0.296875 0.140625 0.578125q0.140625 0.28125 0.421875 0.4375q0.28125 0.15625 0.609375 0.15625q0.5 0 0.828125 -0.3125q0.328125 -0.328125 0.328125 -0.828125q0 -0.515625 -0.34375 -0.84375q-0.328125 -0.328125 -0.828125 -0.328125q-0.5 0 -0.828125 0.328125q-0.328125 0.328125 -0.328125 0.8125zm3.7304688 0.15625l0.75 -0.0625q0.078125 0.53125 0.375 0.8125q0.296875 0.265625 0.71875 0.265625q0.515625 0 0.859375 -0.375q0.359375 -0.390625 0.359375 -1.015625q0 -0.609375 -0.34375 -0.953125q-0.34375 -0.34375 -0.890625 -0.34375q-0.328125 0 -0.609375 0.15625q-0.265625 0.140625 -0.421875 0.390625l-0.671875 -0.078125l0.5625 -2.953125l2.84375 0l0 0.671875l-2.28125 0l-0.3125 1.546875q0.515625 -0.359375 1.078125 -0.359375q0.75 0 1.265625 0.515625q0.515625 0.515625 0.515625 1.34375q0 0.765625 -0.453125 1.34375q-0.546875 0.6875 -1.5 0.6875q-0.78125 0 -1.28125 -0.4375q-0.484375 -0.4375 -0.5625 -1.15625zm7.1054688 1.5l-0.703125 0l0 -4.484375q-0.25 0.25 -0.671875 0.5q-0.40625 0.234375 -0.734375 0.34375l0 -0.671875q0.59375 -0.28125 1.03125 -0.671875q0.4375 -0.390625 0.625 -0.765625l0.453125 0l0 5.75zm1.9023438 -1.328125l0.671875 -0.0625q0.09375 0.484375 0.328125 0.703125q0.25 0.203125 0.625 0.203125q0.328125 0 0.5625 -0.140625q0.25 -0.15625 0.40625 -0.40625q0.15625 -0.25 0.265625 -0.671875q0.109375 -0.421875 0.109375 -0.859375q0 -0.046875 -0.015625 -0.140625q-0.203125 0.34375 -0.578125 0.5625q-0.359375 0.203125 -0.78125 0.203125q-0.71875 0 -1.21875 -0.515625q-0.484375 -0.515625 -0.484375 -1.359375q0 -0.875 0.515625 -1.40625q0.515625 -0.53125 1.296875 -0.53125q0.546875 0 1.015625 0.296875q0.46875 0.296875 0.703125 0.859375q0.234375 0.5625 0.234375 1.609375q0 1.09375 -0.234375 1.75q-0.234375 0.65625 -0.703125 1.0q-0.46875 0.328125 -1.109375 0.328125q-0.671875 0 -1.09375 -0.375q-0.421875 -0.375 -0.515625 -1.046875zm2.875 -2.53125q0 -0.59375 -0.328125 -0.953125q-0.3125 -0.359375 -0.765625 -0.359375q-0.46875 0 -0.8125 0.390625q-0.34375 0.375 -0.34375 0.984375q0 0.546875 0.328125 0.890625q0.328125 0.34375 0.8125 0.34375q0.484375 0 0.796875 -0.34375q0.3125 -0.34375 0.3125 -0.953125zm3.7304688 3.859375l0 -1.375l-2.484375 0l0 -0.640625l2.609375 -3.71875l0.578125 0l0 3.71875l0.765625 0l0 0.640625l-0.765625 0l0 1.375l-0.703125 0zm0 -2.015625l0 -2.578125l-1.796875 2.578125l1.796875 0zm2.1835938 0.515625l0.75 -0.0625q0.078125 0.53125 0.375 0.8125q0.296875 0.265625 0.71875 0.265625q0.515625 0 0.859375 -0.375q0.359375 -0.390625 0.359375 -1.015625q0 -0.609375 -0.34375 -0.953125q-0.34375 -0.34375 -0.890625 -0.34375q-0.328125 0 -0.609375 0.15625q-0.265625 0.140625 -0.421875 0.390625l-0.671875 -0.078125l0.5625 -2.953125l2.84375 0l0 0.671875l-2.28125 0l-0.3125 1.546875q0.515625 -0.359375 1.078125 -0.359375q0.75 0 1.265625 0.515625q0.515625 0.515625 0.515625 1.34375q0 0.765625 -0.453125 1.34375q-0.546875 0.6875 -1.5 0.6875q-0.78125 0 -1.28125 -0.4375q-0.484375 -0.4375 -0.5625 -1.15625zm4.4492188 -1.328125q0 -1.015625 0.203125 -1.625q0.21875 -0.625 0.625 -0.953125q0.421875 -0.34375 1.046875 -0.34375q0.453125 0 0.796875 0.1875q0.359375 0.1875 0.578125 0.53125q0.234375 0.34375 0.359375 0.859375q0.125 0.5 0.125 1.34375q0 1.015625 -0.203125 1.640625q-0.203125 0.609375 -0.625 0.953125q-0.40625 0.328125 -1.03125 0.328125q-0.828125 0 -1.296875 -0.59375q-0.578125 -0.71875 -0.578125 -2.328125zm0.734375 0q0 1.40625 0.328125 1.875q0.328125 0.46875 0.8125 0.46875q0.484375 0 0.8125 -0.46875q0.328125 -0.46875 0.328125 -1.875q0 -1.40625 -0.328125 -1.875q-0.328125 -0.46875 -0.828125 -0.46875q-0.484375 0 -0.765625 0.40625q-0.359375 0.53125 -0.359375 1.9375zm3.8242188 1.5l0.671875 -0.0625q0.09375 0.484375 0.328125 0.703125q0.25 0.203125 0.625 0.203125q0.328125 0 0.5625 -0.140625q0.25 -0.15625 0.40625 -0.40625q0.15625 -0.25 0.265625 -0.671875q0.109375 -0.421875 0.109375 -0.859375q0 -0.046875 -0.015625 -0.140625q-0.203125 0.34375 -0.578125 0.5625q-0.359375 0.203125 -0.78125 0.203125q-0.71875 0 -1.21875 -0.515625q-0.484375 -0.515625 -0.484375 -1.359375q0 -0.875 0.515625 -1.40625q0.515625 -0.53125 1.296875 -0.53125q0.546875 0 1.015625 0.296875q0.46875 0.296875 0.703125 0.859375q0.234375 0.5625 0.234375 1.609375q0 1.09375 -0.234375 1.75q-0.234375 0.65625 -0.703125 1.0q-0.46875 0.328125 -1.109375 0.328125q-0.671875 0 -1.09375 -0.375q-0.421875 -0.375 -0.515625 -1.046875zm2.875 -2.53125q0 -0.59375 -0.328125 -0.953125q-0.3125 -0.359375 -0.765625 -0.359375q-0.46875 0 -0.8125 0.390625q-0.34375 0.375 -0.34375 0.984375q0 0.546875 0.328125 0.890625q0.328125 0.34375 0.8125 0.34375q0.484375 0 0.796875 -0.34375q0.3125 -0.34375 0.3125 -0.953125z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m195.24934 161.65355l65.19685 0l0 49.76378l-65.19685 0z" fill-rule="evenodd"/><path fill="#000000" d="m211.81184 183.6673l0 -2.25l5.8125 0l0 5.3125q-0.84375 0.828125 -2.453125 1.453125q-1.609375 0.625 -3.25 0.625q-2.09375 0 -3.65625 -0.875q-1.5625 -0.890625 -2.34375 -2.515625q-0.78125 -1.640625 -0.78125 -3.5625q0 -2.09375 0.875 -3.703125q0.875 -1.625 2.5625 -2.5q1.28125 -0.65625 3.203125 -0.65625q2.484375 0 3.875 1.046875q1.40625 1.03125 1.796875 2.875l-2.671875 0.5q-0.28125 -0.984375 -1.0625 -1.546875q-0.78125 -0.578125 -1.9375 -0.578125q-1.78125 0 -2.828125 1.125q-1.03125 1.125 -1.03125 3.328125q0 2.375 1.046875 3.5625q1.0625 1.1875 2.78125 1.1875q0.84375 0 1.6875 -0.328125q0.859375 -0.328125 1.46875 -0.8125l0 -1.6875l-3.09375 0zm8.183304 4.90625l0 -13.359375l2.5625 0l0 4.8125q1.171875 -1.34375 2.796875 -1.34375q1.765625 0 2.921875 1.28125q1.15625 1.28125 1.15625 3.671875q0 2.484375 -1.1875 3.828125q-1.171875 1.328125 -2.859375 1.328125q-0.828125 0 -1.640625 -0.40625q-0.796875 -0.421875 -1.375 -1.234375l0 1.421875l-2.375 0zm2.53125 -5.046875q0 1.5 0.484375 2.21875q0.65625 1.03125 1.765625 1.03125q0.84375 0 1.4375 -0.71875q0.59375 -0.734375 0.59375 -2.296875q0 -1.65625 -0.609375 -2.390625q-0.59375 -0.734375 -1.53125 -0.734375q-0.921875 0 -1.53125 0.71875q-0.609375 0.71875 -0.609375 2.171875zm8.989731 5.046875l0 -13.359375l9.90625 0l0 2.265625l-7.21875 0l0 2.953125l6.71875 0l0 2.25l-6.71875 0l0 3.640625l7.46875 0l0 2.25l-10.15625 0z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m221.02362 306.8084l65.19684 0l0 49.763763l-65.19684 0z" fill-rule="evenodd"/><path fill="#000000" d="m237.58612 328.82214l0 -2.25l5.8125 0l0 5.3125q-0.84375 0.828125 -2.453125 1.453125q-1.609375 0.625 -3.25 0.625q-2.09375 0 -3.65625 -0.875q-1.5625 -0.890625 -2.34375 -2.515625q-0.78125 -1.640625 -0.78125 -3.5625q0 -2.09375 0.875 -3.703125q0.875 -1.625 2.5625 -2.5q1.28125 -0.65625 3.203125 -0.65625q2.484375 0 3.875 1.046875q1.40625 1.03125 1.796875 2.875l-2.671875 0.5q-0.28125 -0.984375 -1.0625 -1.546875q-0.78125 -0.578125 -1.9375 -0.578125q-1.78125 0 -2.828125 1.125q-1.03125 1.125 -1.03125 3.328125q0 2.375 1.046875 3.5625q1.0625 1.1875 2.78125 1.1875q0.84375 0 1.6875 -0.328125q0.859375 -0.328125 1.46875 -0.8125l0 -1.6875l-3.09375 0zm8.183304 4.90625l0 -13.359375l2.5625 0l0 4.8125q1.171875 -1.34375 2.796875 -1.34375q1.765625 0 2.921875 1.28125q1.15625 1.28125 1.15625 3.671875q0 2.484375 -1.1875 3.828125q-1.171875 1.328125 -2.859375 1.328125q-0.828125 0 -1.640625 -0.40625q-0.796875 -0.421875 -1.375 -1.234375l0 1.421875l-2.375 0zm2.53125 -5.046875q0 1.5 0.484375 2.21875q0.65625 1.03125 1.765625 1.03125q0.84375 0 1.4375 -0.71875q0.59375 -0.734375 0.59375 -2.296875q0 -1.65625 -0.609375 -2.390625q-0.59375 -0.734375 -1.53125 -0.734375q-0.921875 0 -1.53125 0.71875q-0.609375 0.71875 -0.609375 2.171875zm8.989731 5.046875l0 -13.359375l9.90625 0l0 2.265625l-7.21875 0l0 2.953125l6.71875 0l0 2.25l-6.71875 0l0 3.640625l7.46875 0l0 2.25l-10.15625 0z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m576.458 234.31758l111.87402 0l0 49.76378l-111.87402 0z" fill-rule="evenodd"/><path fill="#000000" d="m592.80176 261.23758l-2.5625 0l0 -9.640625q-1.40625 1.3125 -3.3125 1.9375l0 -2.328125q1.015625 -0.328125 2.1875 -1.234375q1.171875 -0.921875 1.609375 -2.140625l2.078125 0l0 13.40625zm8.156982 -13.40625q1.9375 0 3.03125 1.375q1.296875 1.640625 1.296875 5.4375q0 3.796875 -1.3125 5.453125q-1.078125 1.375 -3.015625 1.375q-1.953125 0 -3.15625 -1.5q-1.1875 -1.5 -1.1875 -5.34375q0 -3.78125 1.3125 -5.4375q1.078125 -1.359375 3.03125 -1.359375zm0 2.125q-0.46875 0 -0.84375 0.296875q-0.359375 0.296875 -0.5625 1.0625q-0.25 0.984375 -0.25 3.328125q0 2.359375 0.234375 3.234375q0.234375 0.875 0.59375 1.171875q0.359375 0.296875 0.828125 0.296875q0.453125 0 0.8125 -0.296875q0.375 -0.296875 0.578125 -1.0625q0.265625 -0.984375 0.265625 -3.34375q0 -2.34375 -0.25 -3.21875q-0.234375 -0.875 -0.59375 -1.171875q-0.359375 -0.296875 -0.8125 -0.296875zm10.375732 -2.125q1.9375 0 3.03125 1.375q1.296875 1.640625 1.296875 5.4375q0 3.796875 -1.3125 5.453125q-1.078125 1.375 -3.015625 1.375q-1.953125 0 -3.15625 -1.5q-1.1875 -1.5 -1.1875 -5.34375q0 -3.78125 1.3125 -5.4375q1.078125 -1.359375 3.03125 -1.359375zm0 2.125q-0.46875 0 -0.84375 0.296875q-0.359375 0.296875 -0.5625 1.0625q-0.25 0.984375 -0.25 3.328125q0 2.359375 0.234375 3.234375q0.234375 0.875 0.59375 1.171875q0.359375 0.296875 0.828125 0.296875q0.453125 0 0.8125 -0.296875q0.375 -0.296875 0.578125 -1.0625q0.265625 -0.984375 0.265625 -3.34375q0 -2.34375 -0.25 -3.21875q-0.234375 -0.875 -0.59375 -1.171875q-0.359375 -0.296875 -0.8125 -0.296875zm6.5787964 11.28125l0 -13.359375l4.03125 0l2.421875 9.109375l2.390625 -9.109375l4.046875 0l0 13.359375l-2.5 0l0 -10.515625l-2.65625 10.515625l-2.59375 0l-2.640625 -10.515625l0 10.515625l-2.5 0zm15.4470825 0l0 -13.359375l2.5625 0l0 4.8125q1.171875 -1.34375 2.796875 -1.34375q1.765625 0 2.921875 1.28125q1.15625 1.28125 1.15625 3.671875q0 2.484375 -1.1875 3.828125q-1.171875 1.328125 -2.859375 1.328125q-0.828125 0 -1.640625 -0.40625q-0.796875 -0.421875 -1.375 -1.234375l0 1.421875l-2.375 0zm2.53125 -5.046875q0 1.5 0.484375 2.21875q0.65625 1.03125 1.765625 1.03125q0.84375 0 1.4375 -0.71875q0.59375 -0.734375 0.59375 -2.296875q0 -1.65625 -0.609375 -2.390625q-0.59375 -0.734375 -1.53125 -0.734375q-0.921875 0 -1.53125 0.71875q-0.609375 0.71875 -0.609375 2.171875zm8.974121 -5.9375l0 -2.375l2.5625 0l0 2.375l-2.5625 0zm0 10.984375l0 -9.671875l2.5625 0l0 9.671875l-2.5625 0zm9.620789 -9.671875l0 2.03125l-1.75 0l0 3.90625q0 1.1875 0.046875 1.390625q0.046875 0.1875 0.21875 0.3125q0.1875 0.125 0.4375 0.125q0.359375 0 1.03125 -0.25l0.21875 2.0q-0.890625 0.375 -2.015625 0.375q-0.703125 0 -1.265625 -0.234375q-0.546875 -0.234375 -0.8125 -0.59375q-0.25 -0.375 -0.34375 -1.0q-0.09375 -0.453125 -0.09375 -1.8125l0 -4.21875l-1.171875 0l0 -2.03125l1.171875 0l0 -1.921875l2.578125 -1.5l0 3.421875l1.75 0z" fill-rule="nonzero"/></g></svg> \ No newline at end of file
diff --git a/content/en/blog/news/20201219-ws-0.png b/content/en/blog/news/20201219-ws-0.png
deleted file mode 100644
index fd7a83a..0000000
--- a/content/en/blog/news/20201219-ws-0.png
+++ /dev/null
Binary files differ
diff --git a/content/en/blog/news/20201219-ws-1.png b/content/en/blog/news/20201219-ws-1.png
deleted file mode 100644
index 0f07fd0..0000000
--- a/content/en/blog/news/20201219-ws-1.png
+++ /dev/null
Binary files differ
diff --git a/content/en/blog/news/20201219-ws-2.png b/content/en/blog/news/20201219-ws-2.png
deleted file mode 100644
index 7cd8b7d..0000000
--- a/content/en/blog/news/20201219-ws-2.png
+++ /dev/null
Binary files differ
diff --git a/content/en/blog/news/20201219-ws-3.png b/content/en/blog/news/20201219-ws-3.png
deleted file mode 100644
index 2a6f6d5..0000000
--- a/content/en/blog/news/20201219-ws-3.png
+++ /dev/null
Binary files differ
diff --git a/content/en/blog/news/20201219-ws-4.png b/content/en/blog/news/20201219-ws-4.png
deleted file mode 100644
index 3a0ef8c..0000000
--- a/content/en/blog/news/20201219-ws-4.png
+++ /dev/null
Binary files differ
diff --git a/content/en/blog/news/_index.md b/content/en/blog/news/_index.md
deleted file mode 100644
index c10cfa2..0000000
--- a/content/en/blog/news/_index.md
+++ /dev/null
@@ -1,5 +0,0 @@
----
-title: "News About Docsy"
-linkTitle: "News"
-weight: 20
----