1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
/*
* Ouroboros - Copyright (C) 2016 - 2024
*
* SHA3 algorithm
*
* Dimitri Staessens <dimitri@ouroboros.rocks>
* Sander Vrijders <sander@ouroboros.rocks>
*
* This implementation is adapted and redistributed from the RHASH
* project
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* version 2.1 as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., http://www.fsf.org/about/contact/.
*/
/* sha3.c - an implementation of Secure Hash Algorithm 3 (Keccak).
* based on the
* The Keccak SHA-3 submission. Submission to NIST (Round 3), 2011
* by Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche
*
* Copyright: 2013 Aleksey Kravchenko <rhash.admin@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. Use this program at your own risk!
*/
#if defined(__linux__) || defined(__CYGWIN__)
#define _DEFAULT_SOURCE
#endif
#include <ouroboros/endian.h>
#include <ouroboros/sha3.h>
#include <assert.h>
#include <string.h>
#define IS_ALIGNED_64(p) (0 == (7 & ((uintptr_t) (p))))
#define I64(x) x##LL
#define ROTL64(qword, n) ((qword) << (n) ^ ((qword) >> (64 - (n))))
#define NumberOfRounds 24
/* SHA3 (Keccak) constants for 24 rounds */
static uint64_t keccak_round_constants[NumberOfRounds] = {
I64(0x0000000000000001), I64(0x0000000000008082),
I64(0x800000000000808A), I64(0x8000000080008000),
I64(0x000000000000808B), I64(0x0000000080000001),
I64(0x8000000080008081), I64(0x8000000000008009),
I64(0x000000000000008A), I64(0x0000000000000088),
I64(0x0000000080008009), I64(0x000000008000000A),
I64(0x000000008000808B), I64(0x800000000000008B),
I64(0x8000000000008089), I64(0x8000000000008003),
I64(0x8000000000008002), I64(0x8000000000000080),
I64(0x000000000000800A), I64(0x800000008000000A),
I64(0x8000000080008081), I64(0x8000000000008080),
I64(0x0000000080000001), I64(0x8000000080008008)
};
static void rhash_keccak_init(struct sha3_ctx * ctx,
unsigned bits)
{
/* NB: The Keccak capacity parameter = bits * 2 */
unsigned rate = 1600 - bits * 2;
memset(ctx, 0, sizeof(struct sha3_ctx));
ctx->block_size = rate / 8;
assert(rate <= 1600 && (rate % 64) == 0);
}
void rhash_sha3_224_init(struct sha3_ctx * ctx)
{
rhash_keccak_init(ctx, 224);
}
void rhash_sha3_256_init(struct sha3_ctx * ctx)
{
rhash_keccak_init(ctx, 256);
}
void rhash_sha3_384_init(struct sha3_ctx * ctx)
{
rhash_keccak_init(ctx, 384);
}
void rhash_sha3_512_init(struct sha3_ctx * ctx)
{
rhash_keccak_init(ctx, 512);
}
static void keccak_theta(uint64_t * A)
{
unsigned int x;
uint64_t C[5];
uint64_t D[5];
for (x = 0; x < 5; x++)
C[x] = A[x] ^ A[x + 5] ^ A[x + 10] ^ A[x + 15] ^ A[x + 20];
D[0] = ROTL64(C[1], 1) ^ C[4];
D[1] = ROTL64(C[2], 1) ^ C[0];
D[2] = ROTL64(C[3], 1) ^ C[1];
D[3] = ROTL64(C[4], 1) ^ C[2];
D[4] = ROTL64(C[0], 1) ^ C[3];
for (x = 0; x < 5; x++) {
A[x] ^= D[x];
A[x + 5] ^= D[x];
A[x + 10] ^= D[x];
A[x + 15] ^= D[x];
A[x + 20] ^= D[x];
}
}
static void keccak_pi(uint64_t * A)
{
uint64_t A1;
A1 = A[1];
A[ 1] = A[ 6];
A[ 6] = A[ 9];
A[ 9] = A[22];
A[22] = A[14];
A[14] = A[20];
A[20] = A[ 2];
A[ 2] = A[12];
A[12] = A[13];
A[13] = A[19];
A[19] = A[23];
A[23] = A[15];
A[15] = A[ 4];
A[ 4] = A[24];
A[24] = A[21];
A[21] = A[ 8];
A[ 8] = A[16];
A[16] = A[ 5];
A[ 5] = A[ 3];
A[ 3] = A[18];
A[18] = A[17];
A[17] = A[11];
A[11] = A[ 7];
A[ 7] = A[10];
A[10] = A1;
/* note: A[ 0] is left as is */
}
static void keccak_chi(uint64_t * A)
{
int i;
for (i = 0; i < 25; i += 5) {
uint64_t A0 = A[0 + i];
uint64_t A1 = A[1 + i];
A[0 + i] ^= ~A1 & A[2 + i];
A[1 + i] ^= ~A[2 + i] & A[3 + i];
A[2 + i] ^= ~A[3 + i] & A[4 + i];
A[3 + i] ^= ~A[4 + i] & A0;
A[4 + i] ^= ~A0 & A1;
}
}
static void rhash_sha3_permutation(uint64_t * state)
{
int round;
for (round = 0; round < NumberOfRounds; round++) {
keccak_theta(state);
/* apply Keccak rho() transformation */
state[ 1] = ROTL64(state[ 1], 1);
state[ 2] = ROTL64(state[ 2], 62);
state[ 3] = ROTL64(state[ 3], 28);
state[ 4] = ROTL64(state[ 4], 27);
state[ 5] = ROTL64(state[ 5], 36);
state[ 6] = ROTL64(state[ 6], 44);
state[ 7] = ROTL64(state[ 7], 6);
state[ 8] = ROTL64(state[ 8], 55);
state[ 9] = ROTL64(state[ 9], 20);
state[10] = ROTL64(state[10], 3);
state[11] = ROTL64(state[11], 10);
state[12] = ROTL64(state[12], 43);
state[13] = ROTL64(state[13], 25);
state[14] = ROTL64(state[14], 39);
state[15] = ROTL64(state[15], 41);
state[16] = ROTL64(state[16], 45);
state[17] = ROTL64(state[17], 15);
state[18] = ROTL64(state[18], 21);
state[19] = ROTL64(state[19], 8);
state[20] = ROTL64(state[20], 18);
state[21] = ROTL64(state[21], 2);
state[22] = ROTL64(state[22], 61);
state[23] = ROTL64(state[23], 56);
state[24] = ROTL64(state[24], 14);
keccak_pi(state);
keccak_chi(state);
/* apply iota(state, round) */
*state ^= keccak_round_constants[round];
}
}
static void rhash_sha3_process_block(uint64_t hash[25],
const uint64_t * block,
size_t block_size)
{
/* expanded loop */
hash[ 0] ^= htole64(block[ 0]);
hash[ 1] ^= htole64(block[ 1]);
hash[ 2] ^= htole64(block[ 2]);
hash[ 3] ^= htole64(block[ 3]);
hash[ 4] ^= htole64(block[ 4]);
hash[ 5] ^= htole64(block[ 5]);
hash[ 6] ^= htole64(block[ 6]);
hash[ 7] ^= htole64(block[ 7]);
hash[ 8] ^= htole64(block[ 8]);
/* if not sha3-512 */
if (block_size > 72) {
hash[ 9] ^= htole64(block[ 9]);
hash[10] ^= htole64(block[10]);
hash[11] ^= htole64(block[11]);
hash[12] ^= htole64(block[12]);
/* if not sha3-384 */
if (block_size > 104) {
hash[13] ^= htole64(block[13]);
hash[14] ^= htole64(block[14]);
hash[15] ^= htole64(block[15]);
hash[16] ^= htole64(block[16]);
/* if not sha3-256 */
if (block_size > 136) {
hash[17] ^= htole64(block[17]);
#ifdef FULL_SHA3_FAMILY_SUPPORT
/* if not sha3-224 */
if (block_size > 144) {
hash[18] ^= htole64(block[18]);
hash[19] ^= htole64(block[19]);
hash[20] ^= htole64(block[20]);
hash[21] ^= htole64(block[21]);
hash[22] ^= htole64(block[22]);
hash[23] ^= htole64(block[23]);
hash[24] ^= htole64(block[24]);
}
#endif
}
}
}
/* make a permutation of the hash */
rhash_sha3_permutation(hash);
}
#define SHA3_FINALIZED 0x80000000
void rhash_sha3_update(struct sha3_ctx * ctx,
const void * pmsg,
size_t size)
{
size_t idx = (size_t) ctx->rest;
size_t block_size = (size_t) ctx->block_size;
uint8_t * msg = (uint8_t *) pmsg;
if (ctx->rest & SHA3_FINALIZED)
return;
ctx->rest = (unsigned) ((ctx->rest + size) % block_size);
/* fill partial block */
if (idx) {
size_t left = block_size - idx;
memcpy((uint8_t *) ctx->message + idx, msg,
(size < left ? size : left));
if (size < left) return;
/* process partial block */
rhash_sha3_process_block(ctx->hash, ctx->message, block_size);
msg += left;
size -= left;
}
while (size >= block_size) {
uint64_t * aligned_message_block;
if (IS_ALIGNED_64(msg)) {
/*
* the most common case is processing of an already
* aligned message without copying it
*/
aligned_message_block = (uint64_t *) msg;
} else {
memcpy(ctx->message, msg, block_size);
aligned_message_block = ctx->message;
}
rhash_sha3_process_block(ctx->hash, aligned_message_block,
block_size);
msg += block_size;
size -= block_size;
}
if (size)
memcpy(ctx->message, msg, size);
}
void rhash_sha3_final(struct sha3_ctx * ctx,
uint8_t * res)
{
size_t digest_length = 100 - ctx->block_size / 2;
size_t digest_words = digest_length / sizeof(uint64_t);
const size_t block_size = ctx->block_size;
size_t i = 0;
if (!(ctx->rest & SHA3_FINALIZED)) {
/* clear the rest of the data queue */
memset((uint8_t *) ctx->message + ctx->rest, 0,
block_size - ctx->rest);
((uint8_t *) ctx->message)[ctx->rest] |= 0x06;
((uint8_t *) ctx->message)[block_size - 1] |= 0x80;
/* process final block */
rhash_sha3_process_block(ctx->hash, ctx->message, block_size);
ctx->rest = SHA3_FINALIZED;
}
assert(block_size > digest_length);
if (res != NULL) {
for (i = 0; i < digest_words; i++)
ctx->hash[i] = htole64(ctx->hash[i]);
memcpy(res, ctx->hash, digest_length);
}
}
|