1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
/*
* Ouroboros - Copyright (C) 2016 - 2020
*
* Elliptic curve Diffie-Hellman key exchange and
* AES encryption for flows using OpenSSL
*
* Dimitri Staessens <dimitri@ouroboros.rocks>
* Sander Vrijders <sander@ouroboros.rocks>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* version 2.1 as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., http://www.fsf.org/about/contact/.
*/
#ifdef HAVE_OPENSSL
#include <openssl/evp.h>
#include <openssl/ec.h>
#include <openssl/pem.h>
#include <openssl/bio.h>
#define IVSZ 16
/* SYMMKEYSZ defined in dev.c */
/*
* Derive the common secret from
* your public key pair (kp)
* the remote public key (pub).
* Store it in a preallocated buffer (s).
*/
static int __openssl_ecdh_derive_secret(EVP_PKEY * kp,
EVP_PKEY * pub,
uint8_t * s)
{
EVP_PKEY_CTX * ctx;
int ret;
uint8_t * secret;
size_t secret_len;
ctx = EVP_PKEY_CTX_new(kp, NULL);
if (ctx == NULL)
goto fail_new;
ret = EVP_PKEY_derive_init(ctx);
if (ret != 1)
goto fail_ctx;
ret = EVP_PKEY_derive_set_peer(ctx, pub);
if (ret != 1)
goto fail_ctx;
ret = EVP_PKEY_derive(ctx, NULL, &secret_len);
if (ret != 1)
goto fail_ctx;
if (secret_len < SYMMKEYSZ)
goto fail_ctx;
secret = OPENSSL_malloc(secret_len);
if (secret == NULL)
goto fail_ctx;
ret = EVP_PKEY_derive(ctx, secret, &secret_len);
if (ret != 1)
goto fail_derive;
/* Hash the secret for use as AES key. */
mem_hash(HASH_SHA3_256, s, secret, secret_len);
OPENSSL_free(secret);
EVP_PKEY_CTX_free(ctx);
return 0;
fail_derive:
OPENSSL_free(secret);
fail_ctx:
EVP_PKEY_CTX_free(ctx);
fail_new:
return -ECRYPT;
}
static int __openssl_ecdh_gen_key(void ** kp)
{
EVP_PKEY_CTX * ctx = NULL;
EVP_PKEY_CTX * kctx = NULL;
EVP_PKEY * params = NULL;
int ret;
ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL);
if (ctx == NULL)
goto fail_new_id;
ret = EVP_PKEY_paramgen_init(ctx);
if (ret != 1)
goto fail_paramgen;
ret = EVP_PKEY_CTX_set_ec_paramgen_curve_nid(ctx, NID_X9_62_prime256v1);
if (ret != 1)
goto fail_paramgen;
ret = EVP_PKEY_paramgen(ctx, ¶ms);
if (ret != 1)
goto fail_paramgen;
kctx = EVP_PKEY_CTX_new(params, NULL);
if (kctx == NULL)
goto fail_keygen_init;
ret = EVP_PKEY_keygen_init(kctx);
if (ret != 1)
goto fail_keygen;
ret = EVP_PKEY_keygen(kctx, (EVP_PKEY **) kp);
if (ret != 1)
goto fail_keygen;
EVP_PKEY_free(params);
EVP_PKEY_CTX_free(kctx);
EVP_PKEY_CTX_free(ctx);
return 0;
fail_keygen:
EVP_PKEY_CTX_free(kctx);
fail_keygen_init:
EVP_PKEY_free(params);
fail_paramgen:
EVP_PKEY_CTX_free(ctx);
fail_new_id:
return -ECRYPT;
}
static ssize_t openssl_ecdh_pkp_create(void ** pkp,
uint8_t * pk)
{
uint8_t * pos;
ssize_t len;
assert(pkp != NULL);
assert(*pkp == NULL);
assert(pk != NULL);
if (__openssl_ecdh_gen_key(pkp) < 0)
return -ECRYPT;
assert(*pkp != NULL);
pos = pk; /* i2d_PUBKEY increments the pointer, don't use buf! */
len = i2d_PUBKEY(*pkp, &pos);
if (len < 0) {
EVP_PKEY_free(*pkp);
return -ECRYPT;
}
return len;
}
static void openssl_ecdh_pkp_destroy(void * pkp)
{
EVP_PKEY_free((EVP_PKEY *) pkp);
}
static int openssl_ecdh_derive(void * pkp,
uint8_t * pk,
size_t len,
uint8_t * s)
{
uint8_t * pos;
EVP_PKEY * pub;
pos = pk; /* d2i_PUBKEY increments the pointer, don't use key ptr! */
pub = d2i_PUBKEY(NULL, (const uint8_t **) &pos, (long) len);
if (pub == NULL)
return -ECRYPT;
if (__openssl_ecdh_derive_secret(pkp, pub, s) < 0) {
EVP_PKEY_free(pub);
return -ECRYPT;
}
EVP_PKEY_free(pub);
return 0;
}
/*
* AES encryption calls. If FRCT is disabled, we should generate a
* 128-bit random IV and append it to the packet. If the flow is
* reliable, we could initialize the context once, and consider the
* stream a single encrypted message to avoid initializing the
* encryption context for each packet.
*/
static int openssl_encrypt(struct flow * f,
struct shm_du_buff * sdb)
{
uint8_t * out;
uint8_t * in;
uint8_t * head;
uint8_t iv[IVSZ];
int in_sz;
int out_sz;
int tmp_sz;
int ret;
in = shm_du_buff_head(sdb);
in_sz = shm_du_buff_tail(sdb) - in;
if (random_buffer(iv, IVSZ) < 0)
goto fail_iv;
out = malloc(in_sz + EVP_MAX_BLOCK_LENGTH);
if (out == NULL)
goto fail_iv;
EVP_CIPHER_CTX_reset(f->ctx);
ret = EVP_EncryptInit_ex(f->ctx,
EVP_aes_256_cbc(),
NULL,
f->key,
iv);
if (ret != 1)
goto fail_encrypt_init;
ret = EVP_EncryptUpdate(f->ctx, out, &tmp_sz, in, in_sz);
if (ret != 1)
goto fail_encrypt;
out_sz = tmp_sz;
ret = EVP_EncryptFinal_ex(f->ctx, out + tmp_sz, &tmp_sz);
if (ret != 1)
goto fail_encrypt;
out_sz += tmp_sz;
EVP_CIPHER_CTX_cleanup(f->ctx);
assert(out_sz >= in_sz);
head = shm_du_buff_head_alloc(sdb, IVSZ);
if (head == NULL)
goto fail_encrypt;
if (shm_du_buff_tail_alloc(sdb, out_sz - in_sz) == NULL)
goto fail_tail_alloc;
memcpy(head, iv, IVSZ);
memcpy(in, out, out_sz);
free(out);
return 0;
fail_tail_alloc:
shm_du_buff_head_release(sdb, IVSZ);
fail_encrypt:
EVP_CIPHER_CTX_cleanup(f->ctx);
fail_encrypt_init:
free(out);
fail_iv:
return -ECRYPT;
}
static int openssl_decrypt(struct flow * f,
struct shm_du_buff * sdb)
{
uint8_t * in;
uint8_t * out;
uint8_t iv[IVSZ];
int ret;
int out_sz;
int in_sz;
int tmp_sz;
in = shm_du_buff_head_release(sdb, IVSZ);
memcpy(iv, in, IVSZ);
in = shm_du_buff_head(sdb);
in_sz = shm_du_buff_tail(sdb) - shm_du_buff_head(sdb);
out = malloc(in_sz);
if (out == NULL)
goto fail_malloc;
EVP_CIPHER_CTX_reset(f->ctx);
ret = EVP_DecryptInit_ex(f->ctx,
EVP_aes_256_cbc(),
NULL,
f->key,
iv);
if (ret != 1)
goto fail_decrypt_init;
ret = EVP_DecryptUpdate(f->ctx, out, &tmp_sz, in, in_sz);
if (ret != 1)
goto fail_decrypt;
out_sz = tmp_sz;
ret = EVP_DecryptFinal_ex(f->ctx, out + tmp_sz, &tmp_sz);
if (ret != 1)
goto fail_decrypt;
out_sz += tmp_sz;
assert(out_sz <= in_sz);
shm_du_buff_tail_release(sdb, in_sz - out_sz);
memcpy(in, out, out_sz);
free(out);
return 0;
fail_decrypt:
EVP_CIPHER_CTX_cleanup(f->ctx);
fail_decrypt_init:
free(out);
fail_malloc:
return -ECRYPT;
}
static int openssl_crypt_init(void ** ctx)
{
*ctx = EVP_CIPHER_CTX_new();
if (*ctx == NULL)
return -ECRYPT;
return 0;
}
static void openssl_crypt_fini(void * ctx)
{
EVP_CIPHER_CTX_free(ctx);
}
#endif /* HAVE_OPENSSL */
static int crypt_dh_pkp_create(void ** pkp,
uint8_t * pk)
{
#ifdef HAVE_OPENSSL
assert(pkp != NULL);
*pkp = NULL;
return openssl_ecdh_pkp_create(pkp, pk);
#else
(void) pkp;
(void) pk;
memset(pk, 0, MSGBUFSZ);
return -ECRYPT;
#endif
}
static void crypt_dh_pkp_destroy(void * pkp)
{
#ifdef HAVE_OPENSSL
openssl_ecdh_pkp_destroy(pkp);
#else
(void) pkp;
return;
#endif
}
static int crypt_dh_derive(void * pkp,
uint8_t * pk,
size_t len,
uint8_t * s)
{
#ifdef HAVE_OPENSSL
return openssl_ecdh_derive(pkp, pk, len, s);
#else
(void) pkp;
(void) pk;
(void) len;
memset(s, 0, SYMMKEYSZ);
return -ECRYPT;
#endif
}
static int crypt_encrypt(struct flow * f,
struct shm_du_buff * sdb)
{
#ifdef HAVE_OPENSSL
return openssl_encrypt(f, sdb);
#else
(void) f;
(void) sdb;
return 0;
#endif
}
static int crypt_decrypt(struct flow * f,
struct shm_du_buff * sdb)
{
#ifdef HAVE_OPENSSL
return openssl_decrypt(f, sdb);
#else
(void) f;
(void) sdb;
return -ECRYPT;
#endif
}
static int crypt_init(void ** ctx)
{
#ifdef HAVE_OPENSSL
return openssl_crypt_init(ctx);
#else
assert(ctx != NULL);
*ctx = NULL;
return 0;
#endif
}
static void crypt_fini(void * ctx)
{
#ifdef HAVE_OPENSSL
openssl_crypt_fini(ctx);
#else
assert(ctx == NULL);
(void) ctx;
#endif
}
|