1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
|
/*
* Ouroboros - Copyright (C) 2016 - 2020
*
* Flow allocator of the IPC Process
*
* Dimitri Staessens <dimitri.staessens@ugent.be>
* Sander Vrijders <sander.vrijders@ugent.be>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., http://www.fsf.org/about/contact/.
*/
#if defined(__linux__) || defined(__CYGWIN__)
#define _DEFAULT_SOURCE
#else
#define _POSIX_C_SOURCE 200112L
#endif
#include "config.h"
#define FA "flow-allocator"
#define OUROBOROS_PREFIX FA
#include <ouroboros/logs.h>
#include <ouroboros/fqueue.h>
#include <ouroboros/errno.h>
#include <ouroboros/dev.h>
#include <ouroboros/ipcp-dev.h>
#include "dir.h"
#include "fa.h"
#include "psched.h"
#include "ipcp.h"
#include "dt.h"
#include <pthread.h>
#include <stdlib.h>
#include <string.h>
#define TIMEOUT 10000 /* nanoseconds */
#define FLOW_REQ 0
#define FLOW_REPLY 1
#define MSGBUFSZ 2048
struct fa_msg {
uint64_t s_addr;
uint32_t r_eid;
uint32_t s_eid;
uint8_t code;
int8_t response;
/* QoS parameters from spec, aligned */
uint8_t availability;
uint8_t in_order;
uint32_t delay;
uint64_t bandwidth;
uint32_t loss;
uint32_t ber;
uint32_t max_gap;
uint16_t cypher_s;
} __attribute__((packed));
struct cmd {
struct list_head next;
struct shm_du_buff * sdb;
};
struct {
pthread_rwlock_t flows_lock;
int r_eid[PROG_MAX_FLOWS];
uint64_t r_addr[PROG_MAX_FLOWS];
int fd;
struct list_head cmds;
pthread_cond_t cond;
pthread_mutex_t mtx;
pthread_t worker;
struct psched * psched;
} fa;
static void packet_handler(int fd,
qoscube_t qc,
struct shm_du_buff * sdb)
{
pthread_rwlock_rdlock(&fa.flows_lock);
if (dt_write_packet(fa.r_addr[fd], qc, fa.r_eid[fd], sdb)) {
pthread_rwlock_unlock(&fa.flows_lock);
ipcp_sdb_release(sdb);
log_warn("Failed to forward packet.");
return;
}
pthread_rwlock_unlock(&fa.flows_lock);
}
static void destroy_conn(int fd)
{
fa.r_eid[fd] = -1;
fa.r_addr[fd] = INVALID_ADDR;
}
static void fa_post_packet(void * comp,
struct shm_du_buff * sdb)
{
struct cmd * cmd;
assert(comp == &fa);
(void) comp;
cmd = malloc(sizeof(*cmd));
if (cmd == NULL) {
log_err("Command failed. Out of memory.");
ipcp_sdb_release(sdb);
return;
}
cmd->sdb = sdb;
pthread_mutex_lock(&fa.mtx);
list_add(&cmd->next, &fa.cmds);
pthread_cond_signal(&fa.cond);
pthread_mutex_unlock(&fa.mtx);
}
static void * fa_handle_packet(void * o)
{
struct timespec ts = {0, TIMEOUT * 1000};
(void) o;
while (true) {
struct timespec abstime;
int fd;
uint8_t buf[MSGBUFSZ];
struct fa_msg * msg;
qosspec_t qs;
struct cmd * cmd;
size_t len;
size_t msg_len;
pthread_mutex_lock(&fa.mtx);
pthread_cleanup_push((void (*)(void *)) pthread_mutex_unlock,
&fa.mtx);
while (list_is_empty(&fa.cmds))
pthread_cond_wait(&fa.cond, &fa.mtx);
cmd = list_last_entry(&fa.cmds, struct cmd, next);
list_del(&cmd->next);
pthread_cleanup_pop(true);
len = shm_du_buff_tail(cmd->sdb) - shm_du_buff_head(cmd->sdb);
if (len > MSGBUFSZ) {
log_err("Message over buffer size.");
free(cmd);
continue;
}
msg = (struct fa_msg *) buf;
/* Depending on the message call the function in ipcp-dev.h */
memcpy(msg, shm_du_buff_head(cmd->sdb), len);
ipcp_sdb_release(cmd->sdb);
free(cmd);
switch (msg->code) {
case FLOW_REQ:
msg_len = sizeof(*msg) + ipcp_dir_hash_len();
assert(len >= msg_len);
clock_gettime(PTHREAD_COND_CLOCK, &abstime);
pthread_mutex_lock(&ipcpi.alloc_lock);
while (ipcpi.alloc_id != -1 &&
ipcp_get_state() == IPCP_OPERATIONAL) {
ts_add(&abstime, &ts, &abstime);
pthread_cond_timedwait(&ipcpi.alloc_cond,
&ipcpi.alloc_lock,
&abstime);
}
if (ipcp_get_state() != IPCP_OPERATIONAL) {
pthread_mutex_unlock(&ipcpi.alloc_lock);
log_dbg("Won't allocate over non-operational"
"IPCP.");
continue;
}
assert(ipcpi.alloc_id == -1);
qs.delay = ntoh32(msg->delay);
qs.bandwidth = ntoh64(msg->bandwidth);
qs.availability = msg->availability;
qs.loss = ntoh32(msg->loss);
qs.ber = ntoh32(msg->ber);
qs.in_order = msg->in_order;
qs.max_gap = ntoh32(msg->max_gap);
qs.cypher_s = ntoh16(msg->cypher_s);
fd = ipcp_flow_req_arr((uint8_t *) (msg + 1),
ipcp_dir_hash_len(),
qs,
buf + msg_len,
len - msg_len);
if (fd < 0) {
pthread_mutex_unlock(&ipcpi.alloc_lock);
log_err("Failed to get fd for flow.");
continue;
}
pthread_rwlock_wrlock(&fa.flows_lock);
fa.r_eid[fd] = ntoh32(msg->s_eid);
fa.r_addr[fd] = ntoh64(msg->s_addr);
pthread_rwlock_unlock(&fa.flows_lock);
ipcpi.alloc_id = fd;
pthread_cond_broadcast(&ipcpi.alloc_cond);
pthread_mutex_unlock(&ipcpi.alloc_lock);
break;
case FLOW_REPLY:
assert(len >= sizeof(*msg));
pthread_rwlock_wrlock(&fa.flows_lock);
fa.r_eid[ntoh32(msg->r_eid)] = ntoh32(msg->s_eid);
ipcp_flow_alloc_reply(ntoh32(msg->r_eid),
msg->response,
buf + sizeof(*msg),
len - sizeof(*msg));
if (msg->response < 0)
destroy_conn(ntoh32(msg->r_eid));
else
psched_add(fa.psched, ntoh32(msg->r_eid));
pthread_rwlock_unlock(&fa.flows_lock);
break;
default:
log_err("Got an unknown flow allocation message.");
break;
}
}
}
int fa_init(void)
{
pthread_condattr_t cattr;
int i;
for (i = 0; i < PROG_MAX_FLOWS; ++i)
destroy_conn(i);
if (pthread_rwlock_init(&fa.flows_lock, NULL))
goto fail_rwlock;
if (pthread_mutex_init(&fa.mtx, NULL))
goto fail_mtx;
if (pthread_condattr_init(&cattr))
goto fail_cattr;
#ifndef __APPLE__
pthread_condattr_setclock(&cattr, PTHREAD_COND_CLOCK);
#endif
if (pthread_cond_init(&fa.cond, &cattr))
goto fail_cond;
pthread_condattr_destroy(&cattr);
list_head_init(&fa.cmds);
fa.fd = dt_reg_comp(&fa, &fa_post_packet, FA);
return 0;
fail_cond:
pthread_condattr_destroy(&cattr);
fail_cattr:
pthread_mutex_destroy(&fa.mtx);
fail_mtx:
pthread_rwlock_destroy(&fa.flows_lock);
fail_rwlock:
log_err("Failed to initialize flow allocator.");
return -1;
}
void fa_fini(void)
{
pthread_cond_destroy(&fa.cond);;
pthread_mutex_destroy(&fa.mtx);
pthread_rwlock_destroy(&fa.flows_lock);
}
int fa_start(void)
{
struct sched_param par;
int pol;
int max;
fa.psched = psched_create(packet_handler);
if (fa.psched == NULL) {
log_err("Failed to start packet scheduler.");
goto fail_psched;
}
if (pthread_create(&fa.worker, NULL, fa_handle_packet, NULL)) {
log_err("Failed to create worker thread.");
goto fail_thread;
}
if (pthread_getschedparam(fa.worker, &pol, &par)) {
log_err("Failed to get worker thread scheduling parameters.");
goto fail_sched;
}
max = sched_get_priority_max(pol);
if (max < 0) {
log_err("Failed to get max priority for scheduler.");
goto fail_sched;
}
par.sched_priority = max;
if (pthread_setschedparam(fa.worker, pol, &par)) {
log_err("Failed to set scheduler priority to maximum.");
goto fail_sched;
}
return 0;
fail_sched:
pthread_cancel(fa.worker);
pthread_join(fa.worker, NULL);
fail_thread:
psched_destroy(fa.psched);
fail_psched:
log_err("Failed to start flow allocator.");
return -1;
}
void fa_stop(void)
{
pthread_cancel(fa.worker);
pthread_join(fa.worker, NULL);
psched_destroy(fa.psched);
}
int fa_alloc(int fd,
const uint8_t * dst,
qosspec_t qs,
const void * data,
size_t dlen)
{
struct fa_msg * msg;
uint64_t addr;
struct shm_du_buff * sdb;
qoscube_t qc;
size_t len;
addr = dir_query(dst);
if (addr == 0)
return -1;
len = sizeof(*msg) + ipcp_dir_hash_len();
if (ipcp_sdb_reserve(&sdb, len + dlen))
return -1;
msg = (struct fa_msg *) shm_du_buff_head(sdb);
msg->code = FLOW_REQ;
msg->s_eid = hton32(fd);
msg->s_addr = hton64(ipcpi.dt_addr);
msg->delay = hton32(qs.delay);
msg->bandwidth = hton64(qs.bandwidth);
msg->availability = qs.availability;
msg->loss = hton32(qs.loss);
msg->ber = hton32(qs.ber);
msg->in_order = qs.in_order;
msg->max_gap = hton32(qs.max_gap);
msg->cypher_s = hton16(qs.cypher_s);
memcpy(msg + 1, dst, ipcp_dir_hash_len());
memcpy(shm_du_buff_head(sdb) + len, data, dlen);
qc = qos_spec_to_cube(qs);
if (dt_write_packet(addr, qc, fa.fd, sdb)) {
ipcp_sdb_release(sdb);
return -1;
}
pthread_rwlock_wrlock(&fa.flows_lock);
assert(fa.r_eid[fd] == -1);
fa.r_addr[fd] = addr;
pthread_rwlock_unlock(&fa.flows_lock);
return 0;
}
int fa_alloc_resp(int fd,
int response,
const void * data,
size_t len)
{
struct timespec ts = {0, TIMEOUT * 1000};
struct timespec abstime;
struct fa_msg * msg;
struct shm_du_buff * sdb;
qoscube_t qc;
clock_gettime(PTHREAD_COND_CLOCK, &abstime);
pthread_mutex_lock(&ipcpi.alloc_lock);
while (ipcpi.alloc_id != fd && ipcp_get_state() == IPCP_OPERATIONAL) {
ts_add(&abstime, &ts, &abstime);
pthread_cond_timedwait(&ipcpi.alloc_cond,
&ipcpi.alloc_lock,
&abstime);
}
if (ipcp_get_state() != IPCP_OPERATIONAL) {
pthread_mutex_unlock(&ipcpi.alloc_lock);
return -1;
}
ipcpi.alloc_id = -1;
pthread_cond_broadcast(&ipcpi.alloc_cond);
pthread_mutex_unlock(&ipcpi.alloc_lock);
if (ipcp_sdb_reserve(&sdb, sizeof(*msg) + len)) {
destroy_conn(fd);
return -1;
}
pthread_rwlock_wrlock(&fa.flows_lock);
msg = (struct fa_msg *) shm_du_buff_head(sdb);
msg->code = FLOW_REPLY;
msg->r_eid = hton32(fa.r_eid[fd]);
msg->s_eid = hton32(fd);
msg->response = response;
memcpy(msg + 1, data, len);
if (response < 0) {
destroy_conn(fd);
ipcp_sdb_release(sdb);
} else {
psched_add(fa.psched, fd);
}
ipcp_flow_get_qoscube(fd, &qc);
assert(qc >= 0 && qc < QOS_CUBE_MAX);
if (dt_write_packet(fa.r_addr[fd], qc, fa.fd, sdb)) {
destroy_conn(fd);
pthread_rwlock_unlock(&fa.flows_lock);
ipcp_sdb_release(sdb);
return -1;
}
pthread_rwlock_unlock(&fa.flows_lock);
return 0;
}
int fa_dealloc(int fd)
{
if (ipcp_flow_fini(fd) < 0)
return 0;
pthread_rwlock_wrlock(&fa.flows_lock);
psched_del(fa.psched, fd);
destroy_conn(fd);
pthread_rwlock_unlock(&fa.flows_lock);
flow_dealloc(fd);
return 0;
}
|