| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
This lets the routing component listen to RIB events. It listens to
/fsdb which is populated with FSOs. The graph that is kept within the
routing component is updated depending on the event that was received.
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
This adds a graph structure which will be updated by routing when it
is notified about a new RIB event. The routing can then use this graph
as input for calculating the shortest path to a destination.
|
| | | | |
|
| |/ / |
|
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This makes the routing component create a Flow State Database
(FSDB). An FSDB contains Flow State Objects (FSOs). An FSO is created
when a neighbor is added, it is deleted when a neighbor is removed and
its QoS is updated when a neighbor's QoS changes.
|
| | | |
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
You can now add multiple flows to a CDAP instance. This will simplify
sending messages to different peers (e.g. for syncing the RIB). A
request will now return an array of keys terminated by
CDAP_KEY_INVALID. Removes the enum from the CDAP proto file to just
take the opcode as an integer.
|
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Our mailserver was migrated from intec.ugent.be to the central
ugent.be emailserver. This PR updates the header files to reflect this
change as well. Some header files were also homogenized if the
parameters within the functions were badly aligned.
|
| | |
| | |
| | |
| | | |
The CMakeLists files are now properly indented.
|
| | |
| | |
| | |
| | | |
This removes the CDAP flow class, which is no longer needed.
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This refactors the different Application Entities of the normal
IPCP. They all listen to and use the connection manager to establish
new application connections.
This commit also adds a neighbors struct to the normal IPCP. It
contains neighbor structs that contain application
connection. Notifiers can be registered in case a neighbor changes
(added, removed, QoS changed).
The flow manager has an instance of this neighbors struct and listens
to these events to update its flow set. The routing component also
listens to these events so that it can update the FSDB if needed. The
flow manager now also creates the PFF instances and the routing
instances per QoS cube.
The RIB manager also uses this an instance of the neighbors struct and
listens to neighbor events as well.
|
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This adds the connection manager which allows the different AEs of the
normal IPCP to register with it. An AE can then use the connection
manager to allocate a flow to a neighbor, or to wait for a new
connection from a neighbor.
|
| | | |
|
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
By removing authentication as part of CACEP, all policies
disappear. CACEP becomes a policy-free connection establishment
protocol between Application Entities. Authentication can later be
added cleanly as a pure policy function when needed.
|
| | |
| | |
| | |
| | |
| | | |
The AE name should not be passed over the layer boundaries. If an
application has more than one AE it should exchange this in CACEP.
|
| |\ \
| | | |
| | | |
| | | | |
lib: Revise CACEP API
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The information passed to CACEP is split between the information about
the connection and the information to be used during the
authentication exchange.
|
|\ \ \ \
| |/ / /
|/| | /
| | |/
| |/| |
|
| | |
| | |
| | |
| | |
| | | |
This fixes bad timedwaits for the state of the reg_entry. Also
slightly revised timedwaits throughout the prototype.
|
|\| |
| |/
|/| |
|
| | |
|
|\| |
|
| | |
|
| |
| |
| |
| |
| | |
This prevents assertion failures in the IPCP in some cases. IPCPs can
now safely assert the type.
|
|\| |
|
| |
| |
| |
| |
| |
| | |
When hammering the oping thread, it will have write fails when the
buffer gets full as its flow is non-blocking. It would stop and
deallocate the flow, but should just continue.
|
|\| |
|
| |
| |
| |
| |
| |
| | |
Sometimes the receiver thread got the SDU before the writer thread has
set the sent time when testing over the local. The sent time is now
written before actually sending to avoid this.
|
| |
| |
| |
| |
| |
| |
| | |
When starting two IRMds, the second one exits, but applications can't
contact the first because the second instance took the UNIX socket.
Now the lockfile is checked for running IRMd instances before opening
the UNIX socket.
|
| | |
|
| |
| |
| |
| |
| |
| | |
This changes the address authority to follow a similar approach to
that of the other policies. No function pointers are passed to its
user anymore.
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This exchanges a protocol name, a protocol version and concrete syntax
for the protocol upon CACEP. For CDAP, only version 1 and GPB are
supported. No lists for other supported versions or syntaxes are
exchanged (but the proto file supports it). CACEP fails if there is a
mismatch between the protocol names, version and syntax specified by
the communicating parties.
|
| |
| |
| |
| |
| | |
Avoids some code duplication in the normal IPCP with respect to
establishing authenticated CDAP flows.
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Revises CACEP policies to stateless library calls. It provides two
policies: an anonymous authentication policy that will generate random
credentials for the peer, and a simple authentication policy that will
return a name for the peer and an address.
Changes the normal IPCP to use the updates API calls.
|
|\ \
| | |
| | |
| | | |
lib: Fix bug in sha3
|
| |/ |
|
|/
|
|
|
| |
This prevented destruction of a CDAP instance that had a timed out
request.
|
|
|
|
|
| |
Moves the definitions of paths in the RIB for the normal IPCP to a
header ribconfig.h to avoid repetition.
|
| |
|
|
|
|
|
|
|
|
| |
This revises the endian header to let the build time checks of
endianness be performed by the standard libraries. We just check for
the OS that is being used and provide the endian functions from
OpenBSD to everyone. It also updates the SHA3 sources to use this new
header. The byte order header is removed.
|
|
|
|
| |
Also fixes another lock.
|
|
|
|
|
| |
Use labs for absolute value of a long, and defines bswap_64 as the
FreeBSD function bswap64.
|
|
|
|
|
|
| |
This increases the threadpool size for the IPCP main loop. Starvation
was happening due to a lot of back and forth interactions between the
normal IPCPd and the IRMd.
|
| |
|
|
|
|
|
| |
ntohll and ntohl have been renamed ntoh64 and ntoh32, htonll and htonl
have been renamed hton64 and hton32.
|
|
|
|
|
|
|
|
| |
When there is a burst of successive flow allocations for a certain
name, each such request will block a thread in the IRMD for
IRMD_REQ_ARR_TIMEOUT ms to allow the application some time to respond.
This refactors some parts of the IRMd.
|
|
|
|
|
|
|
| |
Doing a directory query before the IPCP is has bootstrapped or is
enrolled will result in an assertion failure as the directory is not
yet ready. This fixes flow allocation over the LLC shim (which
triggers a directory query from the IRMd) with a normal IPCP present.
|
|
|
|
|
|
| |
The enrollment procedure will ask for a timestamp of the IPCP it is
enrolling with. It will (taking into account the RTT of the request)
issue a warning if the offset is larger than RIB_WARN_TIME_OFFSET ms.
|
|
|
|
| |
This facilitates sending arbitrary variables over CDAP.
|
|
|
|
|
| |
The acceptor will not log disconnects with IRMd. Unexpected
disconnects will be reported and handled by management components.
|