| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
| |
This turns the PDU Forwarding Function of the IPCP into a policy. For
now only the simple PFF policy is available.
|
|
|
|
|
|
|
|
|
| |
The DHT will now enroll or sync when a data transfer connection is
added. This avoids the need to create a temporary data transfer
connection during enrollment (and speeds it up considerably).
The notifier system was modified to take an opaque pointer to the
object that registers as a parameter.
|
|
|
|
|
|
|
|
| |
This adds the flow down event to Ouroboros. In the shim-eth-llc, a
netlink socket is opened which listens to device up/down events. For
each event the flow is then adjusted with fccntl to notify the user
the flow is down or back up again. In the normal IPCP an event is
thrown if a write reports that the flow is down.
|
|
|
|
|
|
|
|
| |
This removes the RIB as a datastructure and CDAP as the protocol
between IPCPs. CDAP, the rib and related sources are deprecated. The
link-state protocol policy is udpated to use its own protocol based on
a simple broadcast strategy along a tree. The neighbors struct is
deprecated and moved to the library as a generic notifier component.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
This enables user-written tools to instruct IPCPs to establish and
tear down connections (a.k.a. adjacencies) between its internal
components (Management and Data Transfer).
For more info, do "irm ipcp connect" or "irm ipcp disconnect" on the
command line.
This commit exposes a deletion bug in the RIB where FSO's fail to
unpack/parse. This will be fixed when the RIB is deprecated.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The graph adjacency manager has been deprecated in favor of providing
an external interface into the connectivity manager so that
adjacencies can be controlled from the command line, user scripts or
user applications.
The gam and its associated policies were removed from the normal IPCP
and the IRM configuration tools. The "/members" part of the RIB was
deprecated. Removal of the gam means that initial connectivity based
on changes in the RIB can't be provided, so some changes were
required throughout the normal IPCP.
The enrollment procedure was revised to establish its own
connectivity. First, it gets boot information from a peer by
establishing a connection to the remote enrollment component and
downloading the IPCP configuratoin. This is now done using its own
protocol buffers message in anticipation of deprecation of the RIB and
CDAP for communication within a DIF.
After the boot information is downloaded, it establishes a data
transfer flow for enrolling the directory (DHT). After the DHT has
enrolled, it signals the peer to that enrollment is done, and the data
transfer connection is torn down.
Signaling connections is done via the nbs struct, which is now passed
to the connmgr, which enables control of the connectivity graph from
external sources.
|
|
|
|
|
| |
This fixes several memleaks as reported by valgrind. It also fixes
some calls to close() with -1.
|
|
|
|
|
|
|
|
|
|
| |
This revises the build system to have configuration per system
component. System settings can now be set using cmake.
The standard compliance defines were removed from configuration header
and are set in the sources where needed. Also some small code
refactors, such as moving the data for shims out of the ipcp structure
to the respective shims were performed.
|
| |
|
|
|
|
|
|
|
|
|
| |
This implements a Distributed Hash Table (DHT) based on the Kademlia
protocol, with default parameters set as used in the BitTorrent
Mainline DHT. This initial implementation is almost feature complete,
except for some things to be done after a testing period: caching and
stale peer bumping, and setting the expiration timeout via the IRM
tool.
|
|
|
|
|
|
| |
Other protocol machines now have to register on top of the DT AE. This
allows multiple instances of the same protocol machine and avoids
preallocating fds for each protocol machine instance.
|
|
|
|
|
|
| |
This makes the routing component into a policy since different
approaches may exist to do this, depending on how high the rank of the
DIF is.
|
|
|
|
|
|
|
| |
In order to ensure 100% reliable transfer, the protocol state machine
that takes care of retransmission and SDU ordering has to be in the
application. Flow allocation in the normal now uses fds. The PDU_type
field was deprecated and AE's within the DIF can use reserved fds.
|
|
|
|
|
|
|
| |
The frct instance was previously destroyed before sending the message,
resulting in the destination address being 0 and the message getting
dropped. Some fixes in the normal for deallocation, but will require
further revision once all data transfer protocols are in place.
|
| |
|
|
|
|
|
|
| |
Connection establishment was done at the same time as flow
allocation. This splits it more cleanly, and allows to re-use the DT
AE for other purposes.
|
| |
|
|
|
|
|
|
|
| |
This adds a call ipcp_sdb_reserve to reserve memory in the rdrbuff
without directly writing to a flow. The ipcp_flow_del function was
renamed to ipcp_sdb_release. The functions operating on sdbs are moved
to their own header.
|
|
|
|
|
|
| |
The flow sets were still kept within the FA and DT components, when it
makes more sense that they are kept within the SDU scheduler
component.
|
|
This splits the flow manager into the Data Transfer AE, which is in
charge of routing SDUs, and the Flow Allocator AE, which handles flow
allocations.
|