| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The registration function has been moved to the irm tool, applications
now need to be registered by an administrator. Currently only supports
one instance per registered name, and an AP can be registered under
only one name.
The irmd can now start a registered server application on demand.
For the full functionality of the tool, execute "irm register".
AP name removed from flow allocation. Flow allocation does not send
the source ap name as it is quite useless. The accept() call now only
returns the AE name.
|
|/
|
|
|
| |
This adds a shim over LLC over Ethernet. It uses the raw socket API to
send messages directly over an interface.
|
|
|
|
|
| |
This adds a cleanup handler for the main message loop, which closes
the socket upon pthread_cancel so that the ipcp can exit cleanly.
|
|
|
|
|
|
|
|
|
| |
It uses UDP port 0x0D1F on all hosts to send and receive flow
allocation messages. It supports communication between server and
client AP over a single shim IPCP.
Implementation of full flow deallocation is pending. Both the client
and the server still have to call flow_dealloc();
|
|\
| |
| |
| | |
lib, ipcpd, irmd: Add QoS cube definition
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This adds the QoS cube definition, which is an enum to select which
QoS is needed in the IPCP. An application has to use the qos_spec in
qos.h to define what it needs. The IRMd will map this unto a qos cube
definition.
Some headers are now also no longer installed on the system, since
they are only to be used within the irmd and ipcps.
|
|/
|
|
|
|
|
| |
Added necessary locks for the shim-udp. This PR also improves thread
management, the main thread now starts a mainloop thread, which spawns
sdu handler threads when it the IPCP is enrolled. If the IPCP exits
the enrolled state, the sdu loop is cancelled.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit has a first implementation of flow allocation (the "slow
path") and read/write (the "fast path") for ouroboros. It provides
basic but unstable communications over the shared memory.
It required a lot of changes all over the stack, and fixes a number of
previously undetected issues.
This PR still need heavy revision regarding data model, locking and
cleanup.
lib/dev: modifications to the API. It now uses an ap_init() call to
set the AP name and sets the Instance ID to the pid of the process. It
also binds the AP to the shared memory and creates tables for mappings
in the fast path. A call to ap_fini() releases the resources.
lib/shm_ap_rbuff: added ring buffer for data exchange between
processes in the fast path. It passes an index in the shm_du_map.
lib/shm_du_map: rewrote API to work with calls from dev.c. Garbage
collector added. Tests updated to new API.
ipcpd/ipcp-data: removed everything related to flows, as these are
universal for all ap's and kept in ap_data (dev.c), or similar structs
for shim ipcps.
shim-udp: added flow allocator and read/write functions and shm
elements.
irmd: revised data model and structures necessary for flow allocation.
tools: echo updated to new dev.h API.
messaging system was updated to comply with new flow allocation
messages. All exchanges use pid and port_id to bootstrap the fast
path.
|
|
|
|
|
| |
This abstracts away the IRMd messages by calling the functions from
ipcp.h in the ouroboros library. It also fixes some formatting issues.
|
|
|
|
|
|
|
|
| |
All instance-id's in ouroboros will be set by the system to the pid of
the process associated with this application process instance. This
means that the user has no way to choose the instance id's. Function
calls that assumed manually defined instance id's have been replaced
throughout the system.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unregistering ap's now works. An AP now registers/unregisters its AP-I
by sending its AP name and its pid to the IRMd. The IPCPs register
whatevercast names. An AP name is currently mapped on a whatevercast
name represented by the same string literal. The IRMd allows
registration of only one AP-I per AP. A Name Space Management system
is needed in the processing system so we can resolve this completely.
Changing the stack to register whatevercast names required some changes
all over the ipcpd implemented and in the library.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements the API for flow allocation. The shims currently does
the following.
The shim IPCP binds to an interface (IP address) and listens for flow
allocation requests on UDP port 0x0D1F (3359), referenced as the
listen port (lp). It will treat any datagram received on lp as a flow
allocation request.
Upon receiving an allocation request IRM_MSG_CODE__IPCP_FLOW_ALLOC
from the IRMd, the shim IPCP will bind a UDP socket to a port (cp)
allocated by the host OS. From that port it will send a UDP packet
containing the destination ap_name to server_host:lp and wait for a
response.
Upon reception of a packet on server_host:lp, the shim_IPCP creates a
UDP socket for the flow with a port set by the host os (sp), binds to
it and echoes the received datagram back from server_host:sp to
client_host:cp. It will also notify the IRMd of an incoming flow
allocation request IRM_MSG_CODE__IPCP_FLOW_REQ_ARR, with as
src_ap_name ("John Day"). It will get the port_id as a return value
of that message and create a flow with status FLOW_PENDING with that
port_id. If the server responds negatively to the flow allocation
request (i.e. the shim IPCP on the server side receives a
IRM_MSG_CODE__IPCP_FLOW_ALLOC_RESPONSE with a response != 0, it will
delete the pending flow. If response == 0, it will set the status to
FLOW_ALLOCATED.
On the client machine the IPCP will learn sp upon reception of the
echoed datagram. It will then create a flow with the port_id it
received with the message from the IRMd and set it to ALLOCATED.
Pending implementation:
DNS support, this PR only supports local flows on the loopback adapter
127.0.0.1.
A thread to listen for the echoed message, to avoid the
entire IPCP to block when the echoed message is lost.
This PR compiles but is untested pending necessary implementations
elsewhere in the stack.
|
|
|
|
|
| |
added missing NULL checks
common argument check function for ipcps
|
|
Basic functions for implementation of IPC processes, and
implementation of core functions of the shim IPCP over UDP. Updates
to the build system to compile these IPC processes, as well as some
fixes in the irmd (rudimentary capturing exit signals) and some fixes
in the library, mainly relating to the messaging.
Basic implementation of creation / bootstrapping / deletion of the
shim UDP. Placeholders for other functions.
|