| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
| |
There were some compilation issues introduced by adding the interface
monitor to the Ethernet IPCP. Furthermore it was not possible to
select between raw sockets or netmap if both were available.
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
|
|
|
|
|
|
|
|
| |
An unlock was called twice instead of a lock/unlock sequence, causing
a data race.
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
|
|
|
|
|
|
|
|
|
| |
This adds multiple reader and writer threads, configurabe via cmake
with IPCP_ETH_RD_THR and IPCP_ETH_WR_THR. Improves ethernet IPCP
throughput, which looks to be limited by the raw socket calls.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|
|
|
|
|
|
|
|
|
| |
There was a double close of a fd in the Ethernet IPCP. It also passes
the correct max length to a memcpy (a strlen of the source string was
used previously).
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
|
|
|
|
|
|
|
|
| |
This removes the _DEFAULT_SOURCE definition in the endian header as it
should not be there. This avoids double and conflicting definitions.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The SIOCGIFMTU command uses the ifr struct, which is a union, so it
can't store the hw address and the MTU at the same time. We now call
SIOCGIFMTU and set the MTU before SIOCGIFHWADDR.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|
| |
| |
| |
| |
| |
| |
| |
| | |
This fixes the MTU handling in eth. Buffers are now allocated to
smaller size.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|
|\| |
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When the SHM is in single block mode, the MTU may be bigger than a
block. The eth IPCPs reserved buffers the size of MTU, which is now
limited.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|
|/
|
|
|
|
|
|
| |
This adds a data qos cube that is reliable. Reliable qos can be
selected by setting the loss parameter of the qosspec to 0.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|
|
|
|
|
|
|
|
| |
Flow allocation for raw was not yet supported in these IPCPS, causing
enrollment to fail.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|
|
|
|
|
|
|
|
| |
The MTU was not correctly set for the eth-llc ipcp. This also fixes a
missing definition of ETH_MAX_MTU, which was introduced in kernel v4.10.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|
|
|
|
|
|
|
|
| |
The eth-dix IPCP was using a hardcoded MTU of 1500 bytes, but could
support higher MTUs. Now jumbo frames are supported.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|
|
|
|
|
|
|
|
| |
The truncate was setting the length to the frame length, instead of
the actual payload length to be delivered to the N+1.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|
|
|
|
|
|
|
|
| |
An ethertype check was missing for the DIX ethernet IPCP, causing
crashes if there is other traffic on the network.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|
|
|
|
|
|
|
|
|
| |
This writes into the Ethernet device directly from the rdrbuff to
avoid a copy on the write side in the Ethernet IPCPs. This does not
work for the netmap device.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|
|
|
|
|
|
|
|
|
| |
This reads from the Ethernet device directly into the rdrbuff to avoid
a copy on the read side in the Ethernet IPCPs. This does not work for
the netmap device.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|
|
|
|
|
|
|
|
|
| |
This adds a function that locks a thread to a random core. This
greatly improves performance on multi-cpu systems. There is no
portable way to do this, this only implements it for GNU/Linux.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|
|
|
|
|
|
|
|
| |
The packets were being sent and read into a buffer that had the
payload length instead of the frame length.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|
|
|
|
|
|
|
|
| |
This will check if the Ethertype value is a valid Ethertype in the irm
tool and the eth-dix IPCPd.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|
|
|
|
|
|
|
|
|
| |
Some NICs added padding to the Ethernet II frames causing bad frame
lengths and GPB unpack fails. This adds a 2-byte length field to the
DIX frame to circumvent this.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|
|
This adds an IPC Process that uses DIX Ethernet with an Ethertype that
is configurable at bootstrap. This allows parallel DIX layers over the
same Ethernet network with different Ethertypes (and one LLC
layer). It allows jumbo frames in the future, and should avoid the
problems we have with some routers not handling LLC traffic very
well. The destination endpoint ID is sent as a 16 bit integer, so the
maximum payload is 1498 bytes in standard Ethernet, and 8998 bytes
when Jumbo frames are used.
The implementation is very similar to the Ethernet LLC IPCP, so it is
implemented using preprocessor macros in the single source instead of
duplicating code.
Signed-off-by: Dimitri Staessens <dimitri.staessens@ugent.be>
Signed-off-by: Sander Vrijders <sander.vrijders@ugent.be>
|