/* * Ouroboros - Copyright (C) 2016 - 2018 * * SHA3 algorithm * * Dimitri Staessens <dimitri.staessens@ugent.be> * Sander Vrijders <sander.vrijders@ugent.be> * * This implementation is adapted and redistributed from the RHASH * project * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * version 2.1 as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., http://www.fsf.org/about/contact/. */ /* sha3.c - an implementation of Secure Hash Algorithm 3 (Keccak). * based on the * The Keccak SHA-3 submission. Submission to NIST (Round 3), 2011 * by Guido Bertoni, Joan Daemen, Michaƫl Peeters and Gilles Van Assche * * Copyright: 2013 Aleksey Kravchenko <rhash.admin@gmail.com> * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. Use this program at your own risk! */ #if defined(__linux__) || defined(__CYGWIN__) #define _DEFAULT_SOURCE #endif #include <ouroboros/endian.h> #include <ouroboros/sha3.h> #include <assert.h> #include <string.h> #define IS_ALIGNED_64(p) (0 == (7 & ((const uint8_t *) (p) \ - (const uint8_t *) 0))) #define I64(x) x##LL #define ROTL64(qword, n) ((qword) << (n) ^ ((qword) >> (64 - (n)))) #define NumberOfRounds 24 /* SHA3 (Keccak) constants for 24 rounds */ static uint64_t keccak_round_constants[NumberOfRounds] = { I64(0x0000000000000001), I64(0x0000000000008082), I64(0x800000000000808A), I64(0x8000000080008000), I64(0x000000000000808B), I64(0x0000000080000001), I64(0x8000000080008081), I64(0x8000000000008009), I64(0x000000000000008A), I64(0x0000000000000088), I64(0x0000000080008009), I64(0x000000008000000A), I64(0x000000008000808B), I64(0x800000000000008B), I64(0x8000000000008089), I64(0x8000000000008003), I64(0x8000000000008002), I64(0x8000000000000080), I64(0x000000000000800A), I64(0x800000008000000A), I64(0x8000000080008081), I64(0x8000000000008080), I64(0x0000000080000001), I64(0x8000000080008008) }; static void rhash_keccak_init(struct sha3_ctx * ctx, unsigned bits) { /* NB: The Keccak capacity parameter = bits * 2 */ unsigned rate = 1600 - bits * 2; memset(ctx, 0, sizeof(struct sha3_ctx)); ctx->block_size = rate / 8; assert(rate <= 1600 && (rate % 64) == 0); } void rhash_sha3_224_init(struct sha3_ctx * ctx) { rhash_keccak_init(ctx, 224); } void rhash_sha3_256_init(struct sha3_ctx * ctx) { rhash_keccak_init(ctx, 256); } void rhash_sha3_384_init(struct sha3_ctx * ctx) { rhash_keccak_init(ctx, 384); } void rhash_sha3_512_init(struct sha3_ctx * ctx) { rhash_keccak_init(ctx, 512); } static void keccak_theta(uint64_t * A) { unsigned int x; uint64_t C[5]; uint64_t D[5]; for (x = 0; x < 5; x++) C[x] = A[x] ^ A[x + 5] ^ A[x + 10] ^ A[x + 15] ^ A[x + 20]; D[0] = ROTL64(C[1], 1) ^ C[4]; D[1] = ROTL64(C[2], 1) ^ C[0]; D[2] = ROTL64(C[3], 1) ^ C[1]; D[3] = ROTL64(C[4], 1) ^ C[2]; D[4] = ROTL64(C[0], 1) ^ C[3]; for (x = 0; x < 5; x++) { A[x] ^= D[x]; A[x + 5] ^= D[x]; A[x + 10] ^= D[x]; A[x + 15] ^= D[x]; A[x + 20] ^= D[x]; } } static void keccak_pi(uint64_t * A) { uint64_t A1; A1 = A[1]; A[ 1] = A[ 6]; A[ 6] = A[ 9]; A[ 9] = A[22]; A[22] = A[14]; A[14] = A[20]; A[20] = A[ 2]; A[ 2] = A[12]; A[12] = A[13]; A[13] = A[19]; A[19] = A[23]; A[23] = A[15]; A[15] = A[ 4]; A[ 4] = A[24]; A[24] = A[21]; A[21] = A[ 8]; A[ 8] = A[16]; A[16] = A[ 5]; A[ 5] = A[ 3]; A[ 3] = A[18]; A[18] = A[17]; A[17] = A[11]; A[11] = A[ 7]; A[ 7] = A[10]; A[10] = A1; /* note: A[ 0] is left as is */ } static void keccak_chi(uint64_t * A) { int i; for (i = 0; i < 25; i += 5) { uint64_t A0 = A[0 + i]; uint64_t A1 = A[1 + i]; A[0 + i] ^= ~A1 & A[2 + i]; A[1 + i] ^= ~A[2 + i] & A[3 + i]; A[2 + i] ^= ~A[3 + i] & A[4 + i]; A[3 + i] ^= ~A[4 + i] & A0; A[4 + i] ^= ~A0 & A1; } } static void rhash_sha3_permutation(uint64_t * state) { int round; for (round = 0; round < NumberOfRounds; round++) { keccak_theta(state); /* apply Keccak rho() transformation */ state[ 1] = ROTL64(state[ 1], 1); state[ 2] = ROTL64(state[ 2], 62); state[ 3] = ROTL64(state[ 3], 28); state[ 4] = ROTL64(state[ 4], 27); state[ 5] = ROTL64(state[ 5], 36); state[ 6] = ROTL64(state[ 6], 44); state[ 7] = ROTL64(state[ 7], 6); state[ 8] = ROTL64(state[ 8], 55); state[ 9] = ROTL64(state[ 9], 20); state[10] = ROTL64(state[10], 3); state[11] = ROTL64(state[11], 10); state[12] = ROTL64(state[12], 43); state[13] = ROTL64(state[13], 25); state[14] = ROTL64(state[14], 39); state[15] = ROTL64(state[15], 41); state[16] = ROTL64(state[16], 45); state[17] = ROTL64(state[17], 15); state[18] = ROTL64(state[18], 21); state[19] = ROTL64(state[19], 8); state[20] = ROTL64(state[20], 18); state[21] = ROTL64(state[21], 2); state[22] = ROTL64(state[22], 61); state[23] = ROTL64(state[23], 56); state[24] = ROTL64(state[24], 14); keccak_pi(state); keccak_chi(state); /* apply iota(state, round) */ *state ^= keccak_round_constants[round]; } } static void rhash_sha3_process_block(uint64_t hash[25], const uint64_t * block, size_t block_size) { /* expanded loop */ hash[ 0] ^= htole64(block[ 0]); hash[ 1] ^= htole64(block[ 1]); hash[ 2] ^= htole64(block[ 2]); hash[ 3] ^= htole64(block[ 3]); hash[ 4] ^= htole64(block[ 4]); hash[ 5] ^= htole64(block[ 5]); hash[ 6] ^= htole64(block[ 6]); hash[ 7] ^= htole64(block[ 7]); hash[ 8] ^= htole64(block[ 8]); /* if not sha3-512 */ if (block_size > 72) { hash[ 9] ^= htole64(block[ 9]); hash[10] ^= htole64(block[10]); hash[11] ^= htole64(block[11]); hash[12] ^= htole64(block[12]); /* if not sha3-384 */ if (block_size > 104) { hash[13] ^= htole64(block[13]); hash[14] ^= htole64(block[14]); hash[15] ^= htole64(block[15]); hash[16] ^= htole64(block[16]); /* if not sha3-256 */ if (block_size > 136) { hash[17] ^= htole64(block[17]); #ifdef FULL_SHA3_FAMILY_SUPPORT /* if not sha3-224 */ if (block_size > 144) { hash[18] ^= htole64(block[18]); hash[19] ^= htole64(block[19]); hash[20] ^= htole64(block[20]); hash[21] ^= htole64(block[21]); hash[22] ^= htole64(block[22]); hash[23] ^= htole64(block[23]); hash[24] ^= htole64(block[24]); } #endif } } } /* make a permutation of the hash */ rhash_sha3_permutation(hash); } #define SHA3_FINALIZED 0x80000000 void rhash_sha3_update(struct sha3_ctx * ctx, const void * pmsg, size_t size) { size_t idx = (size_t) ctx->rest; size_t block_size = (size_t) ctx->block_size; uint8_t * msg = (uint8_t *) pmsg; if (ctx->rest & SHA3_FINALIZED) return; ctx->rest = (unsigned) ((ctx->rest + size) % block_size); /* fill partial block */ if (idx) { size_t left = block_size - idx; memcpy((uint8_t *) ctx->message + idx, msg, (size < left ? size : left)); if (size < left) return; /* process partial block */ rhash_sha3_process_block(ctx->hash, ctx->message, block_size); msg += left; size -= left; } while (size >= block_size) { uint64_t * aligned_message_block; if (IS_ALIGNED_64(msg)) { /* * the most common case is processing of an already * aligned message without copying it */ aligned_message_block = (uint64_t *) msg; } else { memcpy(ctx->message, msg, block_size); aligned_message_block = ctx->message; } rhash_sha3_process_block(ctx->hash, aligned_message_block, block_size); msg += block_size; size -= block_size; } if (size) memcpy(ctx->message, msg, size); } void rhash_sha3_final(struct sha3_ctx * ctx, uint8_t * res) { size_t digest_length = 100 - ctx->block_size / 2; size_t digest_words = digest_length / sizeof(uint64_t); const size_t block_size = ctx->block_size; size_t i = 0; if (!(ctx->rest & SHA3_FINALIZED)) { /* clear the rest of the data queue */ memset((uint8_t *) ctx->message + ctx->rest, 0, block_size - ctx->rest); ((uint8_t *) ctx->message)[ctx->rest] |= 0x06; ((uint8_t *) ctx->message)[block_size - 1] |= 0x80; /* process final block */ rhash_sha3_process_block(ctx->hash, ctx->message, block_size); ctx->rest = SHA3_FINALIZED; } assert(block_size > digest_length); if (res != NULL) { for (i = 0; i < digest_words; i++) ctx->hash[i] = htole64(ctx->hash[i]); memcpy(res, ctx->hash, digest_length); } }