/* * Ouroboros - Copyright (C) 2016 - 2020 * * API for applications * * Dimitri Staessens <dimitri.staessens@ugent.be> * Sander Vrijders <sander.vrijders@ugent.be> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * version 2.1 as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., http://www.fsf.org/about/contact/. */ #if defined(__linux__) || defined(__CYGWIN__) #define _DEFAULT_SOURCE #else #define _POSIX_C_SOURCE 200809L #endif #include "config.h" #include <ouroboros/hash.h> #include <ouroboros/cacep.h> #include <ouroboros/errno.h> #include <ouroboros/dev.h> #include <ouroboros/ipcp-dev.h> #include <ouroboros/local-dev.h> #include <ouroboros/sockets.h> #include <ouroboros/fccntl.h> #include <ouroboros/bitmap.h> #include <ouroboros/random.h> #include <ouroboros/shm_flow_set.h> #include <ouroboros/shm_rdrbuff.h> #include <ouroboros/shm_rbuff.h> #include <ouroboros/utils.h> #include <ouroboros/fqueue.h> #include <stdlib.h> #include <string.h> #include <stdio.h> #include <stdarg.h> #include <stdbool.h> #include <sys/types.h> #ifndef CLOCK_REALTIME_COARSE #define CLOCK_REALTIME_COARSE CLOCK_REALTIME #endif /* Partial read information. */ #define NO_PART -1 #define DONE_PART -2 #define CRCLEN (sizeof(uint32_t)) #define SECMEMSZ 16384 #define SYMMKEYSZ 32 #define MSGBUFSZ 2048 struct flow_set { size_t idx; }; struct fqueue { int fqueue[2 * SHM_BUFFER_SIZE]; /* Safe copy from shm. */ size_t fqsize; size_t next; }; enum port_state { PORT_NULL = 0, PORT_INIT, PORT_ID_PENDING, PORT_ID_ASSIGNED, PORT_DESTROY }; struct port { int fd; enum port_state state; pthread_mutex_t state_lock; pthread_cond_t state_cond; }; #define frcti_to_flow(frcti) \ ((struct flow *)((uint8_t *) frcti - offsetof(struct flow, frcti))) struct flow { struct shm_rbuff * rx_rb; struct shm_rbuff * tx_rb; struct shm_flow_set * set; int flow_id; int oflags; qosspec_t qs; ssize_t part_idx; void * ctx; uint8_t key[SYMMKEYSZ]; pid_t pid; bool snd_timesout; bool rcv_timesout; struct timespec snd_timeo; struct timespec rcv_timeo; struct frcti * frcti; }; struct { char * prog; pid_t pid; struct shm_rdrbuff * rdrb; struct shm_flow_set * fqset; struct timerwheel * tw; struct bmp * fds; struct bmp * fqueues; struct flow * flows; struct port * ports; pthread_rwlock_t lock; } ai; #include "frct.c" static void port_destroy(struct port * p) { pthread_mutex_lock(&p->state_lock); if (p->state == PORT_DESTROY) { pthread_mutex_unlock(&p->state_lock); return; } if (p->state == PORT_ID_PENDING) p->state = PORT_DESTROY; else p->state = PORT_NULL; pthread_cond_signal(&p->state_cond); while (p->state != PORT_NULL) pthread_cond_wait(&p->state_cond, &p->state_lock); p->fd = -1; p->state = PORT_INIT; pthread_mutex_unlock(&p->state_lock); } static void port_set_state(struct port * p, enum port_state state) { pthread_mutex_lock(&p->state_lock); if (p->state == PORT_DESTROY) { pthread_mutex_unlock(&p->state_lock); return; } p->state = state; pthread_cond_broadcast(&p->state_cond); pthread_mutex_unlock(&p->state_lock); } static enum port_state port_wait_assign(int flow_id) { enum port_state state; struct port * p; p = &ai.ports[flow_id]; pthread_mutex_lock(&p->state_lock); if (p->state == PORT_ID_ASSIGNED) { pthread_mutex_unlock(&p->state_lock); return PORT_ID_ASSIGNED; } if (p->state == PORT_INIT) p->state = PORT_ID_PENDING; while (p->state == PORT_ID_PENDING) pthread_cond_wait(&p->state_cond, &p->state_lock); if (p->state == PORT_DESTROY) { p->state = PORT_NULL; pthread_cond_broadcast(&p->state_cond); } state = p->state; assert(state != PORT_INIT); pthread_mutex_unlock(&p->state_lock); return state; } static int proc_announce(char * prog) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg; int ret = -1; msg.code = IRM_MSG_CODE__IRM_PROC_ANNOUNCE; msg.has_pid = true; msg.pid = ai.pid; msg.prog = prog; recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) { return -EIRMD; } if (!recv_msg->has_result || (ret = recv_msg->result)) { irm_msg__free_unpacked(recv_msg, NULL); return ret; } irm_msg__free_unpacked(recv_msg, NULL); return ret; } static void flow_clear(int fd) { memset(&ai.flows[fd], 0, sizeof(ai.flows[fd])); ai.flows[fd].flow_id = -1; ai.flows[fd].pid = -1; } #include "crypt.c" static void flow_fini(int fd) { assert(fd >= 0 && fd < SYS_MAX_FLOWS); if (ai.flows[fd].flow_id != -1) { port_destroy(&ai.ports[ai.flows[fd].flow_id]); bmp_release(ai.fds, fd); } if (ai.flows[fd].rx_rb != NULL) { shm_rbuff_set_acl(ai.flows[fd].rx_rb, ACL_FLOWDOWN); shm_rbuff_close(ai.flows[fd].rx_rb); } if (ai.flows[fd].tx_rb != NULL) { shm_rbuff_set_acl(ai.flows[fd].tx_rb, ACL_FLOWDOWN); shm_rbuff_close(ai.flows[fd].tx_rb); } if (ai.flows[fd].set != NULL) { shm_flow_set_notify(ai.flows[fd].set, ai.flows[fd].flow_id, FLOW_DEALLOC); shm_flow_set_close(ai.flows[fd].set); } if (ai.flows[fd].frcti != NULL) frcti_destroy(ai.flows[fd].frcti); if (ai.flows[fd].ctx != NULL) crypt_fini(ai.flows[fd].ctx); flow_clear(fd); } static int flow_init(int flow_id, pid_t pid, qosspec_t qs, uint8_t * s) { int fd; int err = -ENOMEM; pthread_rwlock_wrlock(&ai.lock); fd = bmp_allocate(ai.fds); if (!bmp_is_id_valid(ai.fds, fd)) { err = -EBADF; goto fail_fds; } ai.flows[fd].rx_rb = shm_rbuff_open(ai.pid, flow_id); if (ai.flows[fd].rx_rb == NULL) goto fail_rx_rb; ai.flows[fd].tx_rb = shm_rbuff_open(pid, flow_id); if (ai.flows[fd].tx_rb == NULL) goto fail_tx_rb; ai.flows[fd].set = shm_flow_set_open(pid); if (ai.flows[fd].set == NULL) goto fail_set; ai.flows[fd].flow_id = flow_id; ai.flows[fd].oflags = FLOWFDEFAULT; ai.flows[fd].pid = pid; ai.flows[fd].part_idx = NO_PART; ai.flows[fd].qs = qs; if (qs.cypher_s > 0) { assert(s != NULL); if (crypt_init(&ai.flows[fd].ctx) < 0) goto fail_ctx; memcpy(ai.flows[fd].key, s, SYMMKEYSZ); } ai.ports[flow_id].fd = fd; port_set_state(&ai.ports[flow_id], PORT_ID_ASSIGNED); pthread_rwlock_unlock(&ai.lock); return fd; fail_ctx: shm_flow_set_close(ai.flows[fd].set); fail_set: shm_rbuff_close(ai.flows[fd].tx_rb); fail_tx_rb: shm_rbuff_close(ai.flows[fd].rx_rb); fail_rx_rb: bmp_release(ai.fds, fd); fail_fds: pthread_rwlock_unlock(&ai.lock); return err; } static bool check_python(char * str) { if (!strcmp(path_strip(str), "python") || !strcmp(path_strip(str), "python2") || !strcmp(path_strip(str), "python3")) return true; return false; } static void init(int argc, char ** argv, char ** envp) { const char * prog = argv[0]; int i; (void) argc; (void) envp; assert(ai.prog == NULL); if (check_python(argv[0])) prog = argv[1]; ai.pid = getpid(); #ifdef HAVE_LIBGCRYPT if (!gcry_control(GCRYCTL_INITIALIZATION_FINISHED_P)) { if (!gcry_check_version(GCRYPT_VERSION)) goto fail_fds; gcry_control(GCRYCTL_DISABLE_SECMEM, 0); gcry_control(GCRYCTL_INITIALIZATION_FINISHED, 0); } #endif ai.fds = bmp_create(PROG_MAX_FLOWS - PROG_RES_FDS, PROG_RES_FDS); if (ai.fds == NULL) goto fail_fds; ai.fqueues = bmp_create(PROG_MAX_FQUEUES, 0); if (ai.fqueues == NULL) goto fail_fqueues; ai.rdrb = shm_rdrbuff_open(); if (ai.rdrb == NULL) goto fail_rdrb; ai.flows = malloc(sizeof(*ai.flows) * PROG_MAX_FLOWS); if (ai.flows == NULL) goto fail_flows; for (i = 0; i < PROG_MAX_FLOWS; ++i) flow_clear(i); ai.ports = malloc(sizeof(*ai.ports) * SYS_MAX_FLOWS); if (ai.ports == NULL) goto fail_ports; if (prog != NULL) { ai.prog = strdup(path_strip((char *) prog)); if (ai.prog == NULL) goto fail_prog; if (proc_announce((char *) ai.prog)) goto fail_announce; } for (i = 0; i < SYS_MAX_FLOWS; ++i) { ai.ports[i].state = PORT_INIT; if (pthread_mutex_init(&ai.ports[i].state_lock, NULL)) { int j; for (j = 0; j < i; ++j) pthread_mutex_destroy(&ai.ports[j].state_lock); goto fail_announce; } if (pthread_cond_init(&ai.ports[i].state_cond, NULL)) { int j; for (j = 0; j < i; ++j) pthread_cond_destroy(&ai.ports[j].state_cond); goto fail_state_cond; } } if (pthread_rwlock_init(&ai.lock, NULL)) goto fail_lock; ai.fqset = shm_flow_set_open(getpid()); if (ai.fqset == NULL) goto fail_fqset; return; fail_fqset: pthread_rwlock_destroy(&ai.lock); fail_lock: for (i = 0; i < SYS_MAX_FLOWS; ++i) pthread_cond_destroy(&ai.ports[i].state_cond); fail_state_cond: for (i = 0; i < SYS_MAX_FLOWS; ++i) pthread_mutex_destroy(&ai.ports[i].state_lock); fail_announce: free(ai.prog); fail_prog: free(ai.ports); fail_ports: free(ai.flows); fail_flows: shm_rdrbuff_close(ai.rdrb); fail_rdrb: bmp_destroy(ai.fqueues); fail_fqueues: bmp_destroy(ai.fds); fail_fds: fprintf(stderr, "FATAL: ouroboros-dev init failed. " "Make sure an IRMd is running.\n\n"); memset(&ai, 0, sizeof(ai)); exit(EXIT_FAILURE); } static void fini(void) { int i = 0; if (ai.fds == NULL) return; if (ai.prog != NULL) free(ai.prog); pthread_rwlock_wrlock(&ai.lock); for (i = 0; i < PROG_MAX_FLOWS; ++i) { if (ai.flows[i].flow_id != -1) { ssize_t idx; shm_rbuff_set_acl(ai.flows[i].rx_rb, ACL_FLOWDOWN); while ((idx = shm_rbuff_read(ai.flows[i].rx_rb)) >= 0) shm_rdrbuff_remove(ai.rdrb, idx); flow_fini(i); } } shm_flow_set_close(ai.fqset); for (i = 0; i < SYS_MAX_FLOWS; ++i) { pthread_mutex_destroy(&ai.ports[i].state_lock); pthread_cond_destroy(&ai.ports[i].state_cond); } shm_rdrbuff_close(ai.rdrb); free(ai.flows); free(ai.ports); bmp_destroy(ai.fds); bmp_destroy(ai.fqueues); pthread_rwlock_unlock(&ai.lock); pthread_rwlock_destroy(&ai.lock); } #if defined(__MACH__) && defined(__APPLE__) #define INIT_SECTION "__DATA, __mod_init_func" #define FINI_SECTION "__DATA, __mod_term_func" #else #define INIT_SECTION ".init_array" #define FINI_SECTION ".fini_array" #endif __attribute__((section(INIT_SECTION))) __typeof__(init) * __init = init; __attribute__((section(FINI_SECTION))) __typeof__(fini) * __fini = fini; int flow_accept(qosspec_t * qs, const struct timespec * timeo) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg; int fd; void * pkp; /* public key pair */ uint8_t s[SYMMKEYSZ]; /* secret key for flow */ uint8_t buf[MSGBUFSZ]; int err = -EIRMD; ssize_t key_len; memset(s, 0, SYMMKEYSZ); msg.code = IRM_MSG_CODE__IRM_FLOW_ACCEPT; msg.has_pid = true; msg.pid = ai.pid; if (timeo != NULL) { msg.has_timeo_sec = true; msg.has_timeo_nsec = true; msg.timeo_sec = timeo->tv_sec; msg.timeo_nsec = timeo->tv_nsec; } key_len = crypt_dh_pkp_create(&pkp, buf); if (key_len < 0) { err = -ECRYPT; goto fail_crypt_pkp; } msg.has_pk = true; msg.pk.data = buf; msg.pk.len = (uint32_t) key_len; pthread_cleanup_push(crypt_dh_pkp_destroy, pkp); recv_msg = send_recv_irm_msg(&msg); pthread_cleanup_pop(false); if (recv_msg == NULL) goto fail_recv; if (!recv_msg->has_result) goto fail_result; if (recv_msg->result != 0) { err = recv_msg->result; goto fail_result; } if (!recv_msg->has_pid || !recv_msg->has_flow_id || recv_msg->qosspec == NULL) goto fail_result; if (recv_msg->pk.len != 0 && crypt_dh_derive(pkp, recv_msg->pk.data, recv_msg->pk.len, s) < 0) { err = -ECRYPT; goto fail_result; } crypt_dh_pkp_destroy(pkp); fd = flow_init(recv_msg->flow_id, recv_msg->pid, msg_to_spec(recv_msg->qosspec), s); irm_msg__free_unpacked(recv_msg, NULL); if (fd < 0) return fd; pthread_rwlock_wrlock(&ai.lock); assert(ai.flows[fd].frcti == NULL); if (ai.flows[fd].qs.in_order != 0) { ai.flows[fd].frcti = frcti_create(fd); if (ai.flows[fd].frcti == NULL) { pthread_rwlock_unlock(&ai.lock); flow_dealloc(fd); return -ENOMEM; } } if (qs != NULL) *qs = ai.flows[fd].qs; pthread_rwlock_unlock(&ai.lock); return fd; fail_result: irm_msg__free_unpacked(recv_msg, NULL); fail_recv: crypt_dh_pkp_destroy(pkp); fail_crypt_pkp: return err; } static int __flow_alloc(const char * dst, qosspec_t * qs, const struct timespec * timeo, bool join) { irm_msg_t msg = IRM_MSG__INIT; qosspec_msg_t qs_msg = QOSSPEC_MSG__INIT; irm_msg_t * recv_msg; int fd; void * pkp = NULL; /* public key pair */ uint8_t s[SYMMKEYSZ]; /* secret key for flow */ uint8_t buf[MSGBUFSZ]; int err = -EIRMD; memset(s, 0, SYMMKEYSZ); #ifdef QOS_DISABLE_CRC if (qs != NULL) qs->ber = 1; #endif msg.code = join ? IRM_MSG_CODE__IRM_FLOW_JOIN : IRM_MSG_CODE__IRM_FLOW_ALLOC; msg.dst = (char *) dst; msg.has_pid = true; msg.pid = ai.pid; qs_msg = spec_to_msg(qs); msg.qosspec = &qs_msg; if (timeo != NULL) { msg.has_timeo_sec = true; msg.has_timeo_nsec = true; msg.timeo_sec = timeo->tv_sec; msg.timeo_nsec = timeo->tv_nsec; } if (!join && qs != NULL && qs->cypher_s != 0) { ssize_t key_len; key_len = crypt_dh_pkp_create(&pkp, buf); if (key_len < 0) { err = -ECRYPT; goto fail_crypt_pkp; } msg.has_pk = true; msg.pk.data = buf; msg.pk.len = (uint32_t) key_len; } recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) goto fail_send; if (!recv_msg->has_result) goto fail_result; if (recv_msg->result != 0) { err = recv_msg->result; goto fail_result; } if (!recv_msg->has_pid || !recv_msg->has_flow_id) goto fail_result; if (!join && qs != NULL && qs->cypher_s != 0) { if (!recv_msg->has_pk || recv_msg->pk.len == 0) { err = -ECRYPT; goto fail_result; } if (crypt_dh_derive(pkp, recv_msg->pk.data, recv_msg->pk.len, s) < 0) { err = -ECRYPT; goto fail_result; } crypt_dh_pkp_destroy(pkp); } fd = flow_init(recv_msg->flow_id, recv_msg->pid, qs == NULL ? qos_raw : *qs, s); irm_msg__free_unpacked(recv_msg, NULL); if (fd < 0) return fd; pthread_rwlock_wrlock(&ai.lock); assert(ai.flows[fd].frcti == NULL); if (ai.flows[fd].qs.in_order != 0) { ai.flows[fd].frcti = frcti_create(fd); if (ai.flows[fd].frcti == NULL) { pthread_rwlock_unlock(&ai.lock); flow_dealloc(fd); return -ENOMEM; } } pthread_rwlock_unlock(&ai.lock); return fd; fail_result: irm_msg__free_unpacked(recv_msg, NULL); fail_send: crypt_dh_pkp_destroy(pkp); fail_crypt_pkp: return err; } int flow_alloc(const char * dst, qosspec_t * qs, const struct timespec * timeo) { return __flow_alloc(dst, qs, timeo, false); } int flow_join(const char * dst, qosspec_t * qs, const struct timespec * timeo) { if (qs != NULL && qs->cypher_s != 0) return -ECRYPT; return __flow_alloc(dst, qs, timeo, true); } int flow_dealloc(int fd) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg; if (fd < 0 || fd >= SYS_MAX_FLOWS ) return -EINVAL; msg.code = IRM_MSG_CODE__IRM_FLOW_DEALLOC; msg.has_flow_id = true; msg.has_pid = true; msg.pid = ai.pid; pthread_rwlock_rdlock(&ai.lock); if (ai.flows[fd].flow_id < 0) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } msg.flow_id = ai.flows[fd].flow_id; pthread_rwlock_unlock(&ai.lock); recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) return -EIRMD; if (!recv_msg->has_result) { irm_msg__free_unpacked(recv_msg, NULL); return -EIRMD; } irm_msg__free_unpacked(recv_msg, NULL); pthread_rwlock_wrlock(&ai.lock); flow_fini(fd); pthread_rwlock_unlock(&ai.lock); return 0; } int fccntl(int fd, int cmd, ...) { uint32_t * fflags; uint16_t * cflags; va_list l; struct timespec * timeo; qosspec_t * qs; uint32_t rx_acl; uint32_t tx_acl; size_t * qlen; struct flow * flow; if (fd < 0 || fd >= SYS_MAX_FLOWS) return -EBADF; flow = &ai.flows[fd]; va_start(l, cmd); pthread_rwlock_wrlock(&ai.lock); if (flow->flow_id < 0) { pthread_rwlock_unlock(&ai.lock); va_end(l); return -ENOTALLOC; } switch(cmd) { case FLOWSSNDTIMEO: timeo = va_arg(l, struct timespec *); if (timeo == NULL) { flow->snd_timesout = false; } else { flow->snd_timesout = true; flow->snd_timeo = *timeo; } break; case FLOWGSNDTIMEO: timeo = va_arg(l, struct timespec *); if (timeo == NULL) goto einval; if (!flow->snd_timesout) goto eperm; *timeo = flow->snd_timeo; break; case FLOWSRCVTIMEO: timeo = va_arg(l, struct timespec *); if (timeo == NULL) { flow->rcv_timesout = false; } else { flow->rcv_timesout = true; flow->rcv_timeo = *timeo; } break; case FLOWGRCVTIMEO: timeo = va_arg(l, struct timespec *); if (timeo == NULL) goto einval; if (!flow->rcv_timesout) goto eperm; *timeo = flow->snd_timeo; break; case FLOWGQOSSPEC: qs = va_arg(l, qosspec_t *); if (qs == NULL) goto einval; *qs = flow->qs; break; case FLOWGRXQLEN: qlen = va_arg(l, size_t *); *qlen = shm_rbuff_queued(flow->rx_rb); break; case FLOWGTXQLEN: qlen = va_arg(l, size_t *); *qlen = shm_rbuff_queued(flow->tx_rb); break; case FLOWSFLAGS: flow->oflags = va_arg(l, uint32_t); rx_acl = shm_rbuff_get_acl(flow->rx_rb); tx_acl = shm_rbuff_get_acl(flow->rx_rb); /* * Making our own flow write only means making the * the other side of the flow read only. */ if (flow->oflags & FLOWFWRONLY) rx_acl |= ACL_RDONLY; if (flow->oflags & FLOWFRDWR) rx_acl |= ACL_RDWR; if (flow->oflags & FLOWFDOWN) { rx_acl |= ACL_FLOWDOWN; tx_acl |= ACL_FLOWDOWN; shm_flow_set_notify(flow->set, flow->flow_id, FLOW_DOWN); } else { rx_acl &= ~ACL_FLOWDOWN; tx_acl &= ~ACL_FLOWDOWN; shm_flow_set_notify(flow->set, flow->flow_id, FLOW_UP); } shm_rbuff_set_acl(flow->rx_rb, rx_acl); shm_rbuff_set_acl(flow->tx_rb, tx_acl); break; case FLOWGFLAGS: fflags = va_arg(l, uint32_t *); if (fflags == NULL) goto einval; *fflags = flow->oflags; break; case FRCTGFLAGS: cflags = (uint16_t *) va_arg(l, int *); if (cflags == NULL) goto einval; if (flow->frcti == NULL) goto eperm; *cflags = frcti_getconf(flow->frcti); break; default: pthread_rwlock_unlock(&ai.lock); va_end(l); return -ENOTSUP; }; pthread_rwlock_unlock(&ai.lock); va_end(l); return 0; einval: pthread_rwlock_unlock(&ai.lock); va_end(l); return -EINVAL; eperm: pthread_rwlock_unlock(&ai.lock); va_end(l); return -EPERM; } static int chk_crc(struct shm_du_buff * sdb) { uint32_t crc; uint8_t * head = shm_du_buff_head(sdb); uint8_t * tail = shm_du_buff_tail_release(sdb, CRCLEN); mem_hash(HASH_CRC32, &crc, head, tail - head); return !(crc == *((uint32_t *) tail)); } static int add_crc(struct shm_du_buff * sdb) { uint8_t * head = shm_du_buff_head(sdb); uint8_t * tail = shm_du_buff_tail_alloc(sdb, CRCLEN); if (tail == NULL) return -1; mem_hash(HASH_CRC32, tail, head, tail - head); return 0; } ssize_t flow_write(int fd, const void * buf, size_t count) { struct flow * flow; ssize_t idx; int ret; int flags; struct timespec abs; struct timespec * abstime = NULL; struct shm_du_buff * sdb; uint8_t * ptr; if (buf == NULL) return 0; if (fd < 0 || fd > PROG_MAX_FLOWS) return -EBADF; flow = &ai.flows[fd]; clock_gettime(PTHREAD_COND_CLOCK, &abs); pthread_rwlock_rdlock(&ai.lock); if (flow->flow_id < 0) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } if (ai.flows[fd].snd_timesout) { ts_add(&abs, &flow->snd_timeo, &abs); abstime = &abs; } flags = flow->oflags; pthread_rwlock_unlock(&ai.lock); if ((flags & FLOWFACCMODE) == FLOWFRDONLY) return -EPERM; /* TODO: partial writes. */ if (flags & FLOWFWNOBLOCK) idx = shm_rdrbuff_alloc(ai.rdrb, count, &ptr, &sdb); else /* Blocking. */ idx = shm_rdrbuff_alloc_b(ai.rdrb, count, &ptr, &sdb, abstime); if (idx < 0) return idx; memcpy(ptr, buf, count); if (frcti_snd(flow->frcti, sdb) < 0) { shm_rdrbuff_remove(ai.rdrb, idx); return -ENOMEM; } pthread_rwlock_wrlock(&ai.lock); if (flow->qs.cypher_s > 0) if (crypt_encrypt(flow, sdb) < 0) { pthread_rwlock_unlock(&ai.lock); shm_rdrbuff_remove(ai.rdrb, idx); return -ENOMEM; } pthread_rwlock_unlock(&ai.lock); if (flow->qs.ber == 0 && add_crc(sdb) != 0) { shm_rdrbuff_remove(ai.rdrb, idx); return -ENOMEM; } pthread_rwlock_rdlock(&ai.lock); if (flags & FLOWFWNOBLOCK) ret = shm_rbuff_write(flow->tx_rb, idx); else ret = shm_rbuff_write_b(flow->tx_rb, idx, abstime); if (ret < 0) shm_rdrbuff_remove(ai.rdrb, idx); else shm_flow_set_notify(flow->set, flow->flow_id, FLOW_PKT); pthread_rwlock_unlock(&ai.lock); return ret < 0 ? (ssize_t) ret : (ssize_t) count; } ssize_t flow_read(int fd, void * buf, size_t count) { ssize_t idx; ssize_t n; uint8_t * packet; struct shm_rbuff * rb; struct shm_du_buff * sdb; struct timespec abs; struct timespec * abstime = NULL; struct flow * flow; bool noblock; bool partrd; if (fd < 0 || fd > PROG_MAX_FLOWS) return -EBADF; flow = &ai.flows[fd]; clock_gettime(PTHREAD_COND_CLOCK, &abs); pthread_rwlock_rdlock(&ai.lock); if (flow->part_idx == DONE_PART) { pthread_rwlock_unlock(&ai.lock); flow->part_idx = NO_PART; return 0; } if (flow->flow_id < 0) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } rb = flow->rx_rb; noblock = flow->oflags & FLOWFRNOBLOCK; partrd = !(flow->oflags & FLOWFRNOPART); if (ai.flows[fd].rcv_timesout) { ts_add(&abs, &flow->rcv_timeo, &abs); abstime = &abs; } pthread_rwlock_unlock(&ai.lock); idx = flow->part_idx; if (idx < 0) { idx = frcti_queued_pdu(flow->frcti); if (idx < 0) { do { idx = noblock ? shm_rbuff_read(rb) : shm_rbuff_read_b(rb, abstime); if (idx < 0) return idx; sdb = shm_rdrbuff_get(ai.rdrb, idx); if (flow->qs.ber == 0 && chk_crc(sdb) != 0) { shm_rdrbuff_remove(ai.rdrb, idx); continue; } pthread_rwlock_wrlock(&ai.lock); if (flow->qs.cypher_s > 0) if (crypt_decrypt(flow, sdb) < 0) { pthread_rwlock_unlock(&ai.lock); shm_rdrbuff_remove(ai.rdrb, idx); return -ENOMEM; } pthread_rwlock_unlock(&ai.lock); } while (frcti_rcv(flow->frcti, sdb) != 0); } } n = shm_rdrbuff_read(&packet, ai.rdrb, idx); assert(n >= 0); if (n <= (ssize_t) count) { memcpy(buf, packet, n); shm_rdrbuff_remove(ai.rdrb, idx); pthread_rwlock_wrlock(&ai.lock); flow->part_idx = (partrd && n == (ssize_t) count) ? DONE_PART : NO_PART; pthread_rwlock_unlock(&ai.lock); return n; } else { if (partrd) { memcpy(buf, packet, count); sdb = shm_rdrbuff_get(ai.rdrb, idx); shm_du_buff_head_release(sdb, n); flow->part_idx = idx; return count; } else { shm_rdrbuff_remove(ai.rdrb, idx); return -EMSGSIZE; } } } /* fqueue functions. */ struct flow_set * fset_create() { struct flow_set * set = malloc(sizeof(*set)); if (set == NULL) return NULL; assert(ai.fqueues); pthread_rwlock_wrlock(&ai.lock); set->idx = bmp_allocate(ai.fqueues); if (!bmp_is_id_valid(ai.fqueues, set->idx)) { pthread_rwlock_unlock(&ai.lock); free(set); return NULL; } pthread_rwlock_unlock(&ai.lock); return set; } void fset_destroy(struct flow_set * set) { if (set == NULL) return; fset_zero(set); pthread_rwlock_wrlock(&ai.lock); bmp_release(ai.fqueues, set->idx); pthread_rwlock_unlock(&ai.lock); free(set); } struct fqueue * fqueue_create() { struct fqueue * fq = malloc(sizeof(*fq)); if (fq == NULL) return NULL; memset(fq->fqueue, -1, (SHM_BUFFER_SIZE) * sizeof(*fq->fqueue)); fq->fqsize = 0; fq->next = 0; return fq; } void fqueue_destroy(struct fqueue * fq) { free(fq); } void fset_zero(struct flow_set * set) { if (set == NULL) return; shm_flow_set_zero(ai.fqset, set->idx); } int fset_add(struct flow_set * set, int fd) { int ret; size_t packets; size_t i; if (set == NULL || fd < 0 || fd > SYS_MAX_FLOWS) return -EINVAL; pthread_rwlock_wrlock(&ai.lock); if (ai.flows[fd].flow_id < 0) { pthread_rwlock_unlock(&ai.lock); return -EINVAL; } ret = shm_flow_set_add(ai.fqset, set->idx, ai.flows[fd].flow_id); packets = shm_rbuff_queued(ai.flows[fd].rx_rb); for (i = 0; i < packets; i++) shm_flow_set_notify(ai.fqset, ai.flows[fd].flow_id, FLOW_PKT); pthread_rwlock_unlock(&ai.lock); return ret; } void fset_del(struct flow_set * set, int fd) { if (set == NULL || fd < 0 || fd > SYS_MAX_FLOWS) return; pthread_rwlock_wrlock(&ai.lock); if (ai.flows[fd].flow_id >= 0) shm_flow_set_del(ai.fqset, set->idx, ai.flows[fd].flow_id); pthread_rwlock_unlock(&ai.lock); } bool fset_has(const struct flow_set * set, int fd) { bool ret = false; if (set == NULL || fd < 0 || fd > SYS_MAX_FLOWS) return false; pthread_rwlock_rdlock(&ai.lock); if (ai.flows[fd].flow_id < 0) { pthread_rwlock_unlock(&ai.lock); return false; } ret = (shm_flow_set_has(ai.fqset, set->idx, ai.flows[fd].flow_id) == 1); pthread_rwlock_unlock(&ai.lock); return ret; } int fqueue_next(struct fqueue * fq) { int fd; if (fq == NULL) return -EINVAL; if (fq->fqsize == 0 || fq->next == fq->fqsize) return -EPERM; pthread_rwlock_rdlock(&ai.lock); fd = ai.ports[fq->fqueue[fq->next]].fd; fq->next += 2; pthread_rwlock_unlock(&ai.lock); return fd; } enum fqtype fqueue_type(struct fqueue * fq) { if (fq == NULL) return -EINVAL; if (fq->fqsize == 0 || fq->next == 0) return -EPERM; return fq->fqueue[fq->next - 1]; } ssize_t fevent(struct flow_set * set, struct fqueue * fq, const struct timespec * timeo) { ssize_t ret; struct timespec abstime; struct timespec * t = NULL; if (set == NULL || fq == NULL) return -EINVAL; if (fq->fqsize > 0 && fq->next != fq->fqsize) return fq->fqsize; if (timeo != NULL) { clock_gettime(PTHREAD_COND_CLOCK, &abstime); ts_add(&abstime, timeo, &abstime); t = &abstime; } ret = shm_flow_set_wait(ai.fqset, set->idx, fq->fqueue, t); if (ret == -ETIMEDOUT) { fq->fqsize = 0; return -ETIMEDOUT; } fq->fqsize = ret << 1; fq->next = 0; assert(ret); return ret; } /* ipcp-dev functions. */ int np1_flow_alloc(pid_t n_pid, int flow_id, qosspec_t qs) { qs.cypher_s = 0; /* No encryption ctx for np1 */ return flow_init(flow_id, n_pid, qs, NULL); } int np1_flow_dealloc(int flow_id) { int fd; pthread_rwlock_rdlock(&ai.lock); fd = ai.ports[flow_id].fd; pthread_rwlock_unlock(&ai.lock); return fd; } int np1_flow_resp(int flow_id) { int fd; if (port_wait_assign(flow_id) != PORT_ID_ASSIGNED) return -1; pthread_rwlock_rdlock(&ai.lock); fd = ai.ports[flow_id].fd; pthread_rwlock_unlock(&ai.lock); return fd; } int ipcp_create_r(int result) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg; int ret; msg.code = IRM_MSG_CODE__IPCP_CREATE_R; msg.has_pid = true; msg.pid = getpid(); msg.has_result = true; msg.result = result; recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) return -EIRMD; if (!recv_msg->has_result) { irm_msg__free_unpacked(recv_msg, NULL); return -1; } ret = recv_msg->result; irm_msg__free_unpacked(recv_msg, NULL); return ret; } int ipcp_flow_req_arr(const uint8_t * dst, size_t len, qosspec_t qs, const void * data, size_t dlen) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg; qosspec_msg_t qs_msg; int fd; assert(dst != NULL); msg.code = IRM_MSG_CODE__IPCP_FLOW_REQ_ARR; msg.has_pid = true; msg.pid = getpid(); msg.has_hash = true; msg.hash.len = len; msg.hash.data = (uint8_t *) dst; qs_msg = spec_to_msg(&qs); msg.qosspec = &qs_msg; msg.has_pk = true; msg.pk.data = (uint8_t *) data; msg.pk.len = dlen; recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) return -EIRMD; if (!recv_msg->has_flow_id || !recv_msg->has_pid) { irm_msg__free_unpacked(recv_msg, NULL); return -1; } if (recv_msg->has_result && recv_msg->result) { irm_msg__free_unpacked(recv_msg, NULL); return -1; } qs.cypher_s = 0; /* No encryption ctx for np1 */ fd = flow_init(recv_msg->flow_id, recv_msg->pid, qs, NULL); irm_msg__free_unpacked(recv_msg, NULL); return fd; } int ipcp_flow_alloc_reply(int fd, int response, const void * data, size_t len) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg; int ret; assert(fd >= 0 && fd < SYS_MAX_FLOWS); msg.code = IRM_MSG_CODE__IPCP_FLOW_ALLOC_REPLY; msg.has_flow_id = true; msg.has_pk = true; msg.pk.data = (uint8_t *) data; msg.pk.len = (uint32_t) len; pthread_rwlock_rdlock(&ai.lock); msg.flow_id = ai.flows[fd].flow_id; pthread_rwlock_unlock(&ai.lock); msg.has_response = true; msg.response = response; recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) return -EIRMD; if (!recv_msg->has_result) { irm_msg__free_unpacked(recv_msg, NULL); return -1; } ret = recv_msg->result; irm_msg__free_unpacked(recv_msg, NULL); return ret; } int ipcp_flow_read(int fd, struct shm_du_buff ** sdb) { struct flow * flow; struct shm_rbuff * rb; ssize_t idx; assert(fd >= 0 && fd < SYS_MAX_FLOWS); assert(sdb); flow = &ai.flows[fd]; pthread_rwlock_rdlock(&ai.lock); assert(flow->flow_id >= 0); rb = flow->rx_rb; pthread_rwlock_unlock(&ai.lock); if (flow->frcti != NULL) { idx = frcti_queued_pdu(flow->frcti); if (idx >= 0) { *sdb = shm_rdrbuff_get(ai.rdrb, idx); return 0; } } do { idx = shm_rbuff_read(rb); if (idx < 0) return idx; *sdb = shm_rdrbuff_get(ai.rdrb, idx); if (flow->qs.ber == 0 && chk_crc(*sdb) != 0) continue; } while (frcti_rcv(flow->frcti, *sdb) != 0); return 0; } int ipcp_flow_write(int fd, struct shm_du_buff * sdb) { struct flow * flow; int ret; ssize_t idx; assert(fd >= 0 && fd < SYS_MAX_FLOWS); assert(sdb); flow = &ai.flows[fd]; pthread_rwlock_rdlock(&ai.lock); if (flow->flow_id < 0) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } if ((flow->oflags & FLOWFACCMODE) == FLOWFRDONLY) { pthread_rwlock_unlock(&ai.lock); return -EPERM; } assert(flow->tx_rb); idx = shm_du_buff_get_idx(sdb); if (frcti_snd(flow->frcti, sdb) < 0) { pthread_rwlock_unlock(&ai.lock); return -ENOMEM; } if (flow->qs.ber == 0 && add_crc(sdb) != 0) { pthread_rwlock_unlock(&ai.lock); shm_rdrbuff_remove(ai.rdrb, idx); return -ENOMEM; } ret = shm_rbuff_write_b(flow->tx_rb, idx, NULL); if (ret == 0) shm_flow_set_notify(flow->set, flow->flow_id, FLOW_PKT); else shm_rdrbuff_remove(ai.rdrb, idx); pthread_rwlock_unlock(&ai.lock); assert(ret <= 0); return ret; } int ipcp_sdb_reserve(struct shm_du_buff ** sdb, size_t len) { return shm_rdrbuff_alloc_b(ai.rdrb, len, NULL, sdb, NULL) < 0 ? -1 : 0; } void ipcp_sdb_release(struct shm_du_buff * sdb) { shm_rdrbuff_remove(ai.rdrb, shm_du_buff_get_idx(sdb)); } int ipcp_flow_fini(int fd) { struct shm_rbuff * rx_rb; assert(fd >= 0 && fd < SYS_MAX_FLOWS); pthread_rwlock_rdlock(&ai.lock); if (ai.flows[fd].flow_id < 0) { pthread_rwlock_unlock(&ai.lock); return -1; } shm_rbuff_set_acl(ai.flows[fd].rx_rb, ACL_FLOWDOWN); shm_rbuff_set_acl(ai.flows[fd].tx_rb, ACL_FLOWDOWN); shm_flow_set_notify(ai.flows[fd].set, ai.flows[fd].flow_id, FLOW_DEALLOC); rx_rb = ai.flows[fd].rx_rb; pthread_rwlock_unlock(&ai.lock); if (rx_rb != NULL) shm_rbuff_fini(rx_rb); return 0; } int ipcp_flow_get_qoscube(int fd, qoscube_t * cube) { assert(fd >= 0 && fd < SYS_MAX_FLOWS); assert(cube); pthread_rwlock_rdlock(&ai.lock); assert(ai.flows[fd].flow_id >= 0); *cube = qos_spec_to_cube(ai.flows[fd].qs); pthread_rwlock_unlock(&ai.lock); return 0; } ssize_t local_flow_read(int fd) { ssize_t ret; assert(fd >= 0); pthread_rwlock_rdlock(&ai.lock); ret = shm_rbuff_read(ai.flows[fd].rx_rb); pthread_rwlock_unlock(&ai.lock); return ret; } int local_flow_write(int fd, size_t idx) { struct flow * flow; int ret; assert(fd >= 0); flow = &ai.flows[fd]; pthread_rwlock_rdlock(&ai.lock); if (flow->flow_id < 0) { pthread_rwlock_unlock(&ai.lock); return -ENOTALLOC; } ret = shm_rbuff_write_b(flow->tx_rb, idx, NULL); if (ret == 0) shm_flow_set_notify(flow->set, flow->flow_id, FLOW_PKT); else shm_rdrbuff_remove(ai.rdrb, idx); pthread_rwlock_unlock(&ai.lock); return ret; }