/* * Ouroboros - Copyright (C) 2016 - 2017 * * API for applications * * Dimitri Staessens <dimitri.staessens@ugent.be> * Sander Vrijders <sander.vrijders@ugent.be> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * version 2.1 as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301 USA */ #include <ouroboros/config.h> #include <ouroboros/errno.h> #include <ouroboros/dev.h> #include <ouroboros/sockets.h> #include <ouroboros/fcntl.h> #include <ouroboros/bitmap.h> #include <ouroboros/shm_flow_set.h> #include <ouroboros/shm_rdrbuff.h> #include <ouroboros/shm_rbuff.h> #include <ouroboros/utils.h> #include <ouroboros/fqueue.h> #include <stdlib.h> #include <string.h> #include <stdio.h> struct flow_set { size_t idx; }; struct fqueue { int fqueue[SHM_BUFFER_SIZE]; /* safe copy from shm */ size_t fqsize; size_t next; }; enum port_state { PORT_NULL = 0, PORT_INIT, PORT_ID_PENDING, PORT_ID_ASSIGNED, PORT_DESTROY }; struct port { int fd; enum port_state state; pthread_mutex_t state_lock; pthread_cond_t state_cond; }; static void port_destroy(struct port * p) { pthread_mutex_lock(&p->state_lock); if (p->state == PORT_DESTROY) { pthread_mutex_unlock(&p->state_lock); return; } if (p->state == PORT_ID_PENDING) p->state = PORT_DESTROY; else p->state = PORT_NULL; pthread_cond_signal(&p->state_cond); while (p->state != PORT_NULL) pthread_cond_wait(&p->state_cond, &p->state_lock); p->fd = -1; p->state = PORT_INIT; pthread_mutex_unlock(&p->state_lock); } static void port_set_state(struct port * p, enum port_state state) { pthread_mutex_lock(&p->state_lock); if (p->state == PORT_DESTROY) { pthread_mutex_unlock(&p->state_lock); return; } p->state = state; pthread_cond_broadcast(&p->state_cond); pthread_mutex_unlock(&p->state_lock); } static enum port_state port_wait_assign(struct port * p) { enum port_state state; pthread_mutex_lock(&p->state_lock); if (p->state == PORT_ID_ASSIGNED) { pthread_mutex_unlock(&p->state_lock); return PORT_ID_ASSIGNED; } if(p->state == PORT_INIT) p->state = PORT_ID_PENDING; while (p->state == PORT_ID_PENDING) pthread_cond_wait(&p->state_cond, &p->state_lock); if (p->state == PORT_DESTROY) { p->state = PORT_NULL; pthread_cond_broadcast(&p->state_cond); } state = p->state; assert(state != PORT_INIT); pthread_mutex_unlock(&p->state_lock); return state; } struct flow { struct shm_rbuff * rx_rb; struct shm_rbuff * tx_rb; struct shm_flow_set * set; int port_id; int oflags; qoscube_t cube; pid_t api; bool timesout; struct timespec rcv_timeo; }; struct { char * ap_name; char * daf_name; pid_t api; struct shm_rdrbuff * rdrb; struct shm_flow_set * fqset; struct bmp * fds; struct bmp * fqueues; struct flow * flows; struct port * ports; pthread_rwlock_t flows_lock; } ai; /* FIXME: translate real spec to cube */ static qoscube_t spec_to_cube(qosspec_t * qs) { if (qs == NULL) return QOS_CUBE_BE; return qs->cube; } /* FIXME: fill real spec */ static void fill_qosspec(qosspec_t * qs, qoscube_t cube) { assert(qs); qs->cube = cube; } static int api_announce(char * ap_name) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg = NULL; int ret = -1; msg.code = IRM_MSG_CODE__IRM_API_ANNOUNCE; msg.has_api = true; msg.api = ai.api; msg.ap_name = ap_name; recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) { return -EIRMD; } if (!recv_msg->has_result || (ret = recv_msg->result)) { irm_msg__free_unpacked(recv_msg, NULL); return ret; } irm_msg__free_unpacked(recv_msg, NULL); return ret; } static void init_flow(int fd) { assert(!(fd < 0)); memset(&ai.flows[fd], 0, sizeof(ai.flows[fd])); ai.flows[fd].port_id = -1; ai.flows[fd].api = -1; ai.flows[fd].cube = QOS_CUBE_BE; } static void reset_flow(int fd) { assert (!(fd < 0)); if (ai.flows[fd].port_id != -1) port_destroy(&ai.ports[ai.flows[fd].port_id]); if (ai.flows[fd].rx_rb != NULL) shm_rbuff_close(ai.flows[fd].rx_rb); if (ai.flows[fd].tx_rb != NULL) shm_rbuff_close(ai.flows[fd].tx_rb); if (ai.flows[fd].set != NULL) shm_flow_set_close(ai.flows[fd].set); init_flow(fd); } int ouroboros_init(const char * ap_name) { int i = 0; assert(ai.ap_name == NULL); ai.api = getpid(); ai.daf_name = NULL; ai.fds = bmp_create(AP_MAX_FLOWS, AP_RES_FDS + 1); if (ai.fds == NULL) return -ENOMEM; ai.fqueues = bmp_create(AP_MAX_FQUEUES, 0); if (ai.fqueues == NULL) { bmp_destroy(ai.fds); return -ENOMEM; } ai.fqset = shm_flow_set_create(); if (ai.fqset == NULL) { bmp_destroy(ai.fqueues); bmp_destroy(ai.fds); return -ENOMEM; } ai.rdrb = shm_rdrbuff_open(); if (ai.rdrb == NULL) { shm_flow_set_destroy(ai.fqset); bmp_destroy(ai.fqueues); bmp_destroy(ai.fds); return -EIRMD; } ai.flows = malloc(sizeof(*ai.flows) * AP_MAX_FLOWS); if (ai.flows == NULL) { shm_rdrbuff_close(ai.rdrb); shm_flow_set_destroy(ai.fqset); bmp_destroy(ai.fqueues); bmp_destroy(ai.fds); return -ENOMEM; } for (i = 0; i < AP_MAX_FLOWS; ++i) init_flow(i); ai.ports = malloc(sizeof(*ai.ports) * IRMD_MAX_FLOWS); if (ai.ports == NULL) { free(ai.flows); shm_rdrbuff_close(ai.rdrb); shm_flow_set_destroy(ai.fqset); bmp_destroy(ai.fqueues); bmp_destroy(ai.fds); return -ENOMEM; } if (ap_name != NULL) { ai.ap_name = strdup(path_strip((char *) ap_name)); if (ai.ap_name == NULL) { free(ai.flows); shm_rdrbuff_close(ai.rdrb); shm_flow_set_destroy(ai.fqset); bmp_destroy(ai.fqueues); bmp_destroy(ai.fds); return -ENOMEM; } if (api_announce((char *) ai.ap_name)) { free(ai.ap_name); free(ai.flows); shm_rdrbuff_close(ai.rdrb); shm_flow_set_destroy(ai.fqset); bmp_destroy(ai.fqueues); bmp_destroy(ai.fds); return -EIRMD; } } for (i = 0; i < IRMD_MAX_FLOWS; ++i) { ai.ports[i].state = PORT_INIT; pthread_mutex_init(&ai.ports[i].state_lock, NULL); pthread_cond_init(&ai.ports[i].state_cond, NULL); } pthread_rwlock_init(&ai.flows_lock, NULL); return 0; } void ouroboros_fini() { int i = 0; bmp_destroy(ai.fds); bmp_destroy(ai.fqueues); shm_flow_set_destroy(ai.fqset); if (ai.daf_name != NULL) free(ai.daf_name); if (ai.ap_name != NULL) free(ai.ap_name); pthread_rwlock_rdlock(&ai.flows_lock); for (i = 0; i < AP_MAX_FLOWS; ++i) { if (ai.flows[i].port_id != -1) { ssize_t idx; while ((idx = shm_rbuff_read(ai.flows[i].rx_rb)) >= 0) shm_rdrbuff_remove(ai.rdrb, idx); port_destroy(&ai.ports[ai.flows[i].port_id]); reset_flow(i); } } for (i = 0; i < IRMD_MAX_FLOWS; ++i) { pthread_mutex_destroy(&ai.ports[i].state_lock); pthread_cond_destroy(&ai.ports[i].state_cond); } shm_rdrbuff_close(ai.rdrb); free(ai.flows); free(ai.ports); pthread_rwlock_unlock(&ai.flows_lock); pthread_rwlock_destroy(&ai.flows_lock); } int flow_accept(qosspec_t * qs, const struct timespec * timeo) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg = NULL; int fd = -1; msg.code = IRM_MSG_CODE__IRM_FLOW_ACCEPT; msg.has_api = true; if (timeo != NULL) { msg.has_timeo_sec = true; msg.has_timeo_nsec = true; msg.timeo_sec = timeo->tv_sec; msg.timeo_nsec = timeo->tv_nsec; } msg.api = ai.api; recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) return -EIRMD; if (!recv_msg->has_result) { irm_msg__free_unpacked(recv_msg, NULL); return -EIRMD; } if (recv_msg->result != 0) { int res = recv_msg->result; irm_msg__free_unpacked(recv_msg, NULL); return res; } if (!recv_msg->has_api || !recv_msg->has_port_id) { irm_msg__free_unpacked(recv_msg, NULL); return -EIRMD; } pthread_rwlock_wrlock(&ai.flows_lock); fd = bmp_allocate(ai.fds); if (!bmp_is_id_valid(ai.fds, fd)) { pthread_rwlock_unlock(&ai.flows_lock); irm_msg__free_unpacked(recv_msg, NULL); return -EBADF; } ai.flows[fd].rx_rb = shm_rbuff_open(ai.api, recv_msg->port_id); if (ai.flows[fd].rx_rb == NULL) { bmp_release(ai.fds, fd); pthread_rwlock_unlock(&ai.flows_lock); irm_msg__free_unpacked(recv_msg, NULL); return -ENOMEM; } ai.flows[fd].tx_rb = shm_rbuff_open(recv_msg->api, recv_msg->port_id); if (ai.flows[fd].tx_rb == NULL) { reset_flow(fd); bmp_release(ai.fds, fd); pthread_rwlock_unlock(&ai.flows_lock); irm_msg__free_unpacked(recv_msg, NULL); return -ENOMEM; } ai.flows[fd].set = shm_flow_set_open(recv_msg->api); if (ai.flows[fd].set == NULL) { reset_flow(fd); bmp_release(ai.fds, fd); pthread_rwlock_unlock(&ai.flows_lock); irm_msg__free_unpacked(recv_msg, NULL); return -ENOMEM; } ai.flows[fd].port_id = recv_msg->port_id; ai.flows[fd].oflags = FLOW_O_DEFAULT; ai.flows[fd].api = recv_msg->api; ai.flows[fd].cube = recv_msg->qoscube; assert(ai.ports[ai.flows[fd].port_id].state == PORT_INIT); if (qs != NULL) fill_qosspec(qs, ai.flows[fd].cube); ai.ports[recv_msg->port_id].fd = fd; ai.ports[recv_msg->port_id].state = PORT_ID_ASSIGNED; pthread_rwlock_unlock(&ai.flows_lock); irm_msg__free_unpacked(recv_msg, NULL); return fd; } int flow_alloc(const char * dst_name, qosspec_t * qs, const struct timespec * timeo) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg = NULL; int fd; msg.code = IRM_MSG_CODE__IRM_FLOW_ALLOC; msg.dst_name = (char *) dst_name; msg.has_api = true; msg.has_qoscube = true; msg.qoscube = spec_to_cube(qs); msg.api = ai.api; if (timeo != NULL) { msg.has_timeo_sec = true; msg.has_timeo_nsec = true; msg.timeo_sec = timeo->tv_sec; msg.timeo_nsec = timeo->tv_nsec; } recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) return -EIRMD; if (!recv_msg->has_result) { irm_msg__free_unpacked(recv_msg, NULL); return -EIRMD; } if (recv_msg->result != 0) { int res = recv_msg->result; irm_msg__free_unpacked(recv_msg, NULL); return res; } if (!recv_msg->has_api || !recv_msg->has_port_id) { irm_msg__free_unpacked(recv_msg, NULL); return -EIRMD; } pthread_rwlock_wrlock(&ai.flows_lock); fd = bmp_allocate(ai.fds); if (!bmp_is_id_valid(ai.fds, fd)) { pthread_rwlock_unlock(&ai.flows_lock); irm_msg__free_unpacked(recv_msg, NULL); return -EBADF; } ai.flows[fd].rx_rb = shm_rbuff_open(ai.api, recv_msg->port_id); if (ai.flows[fd].rx_rb == NULL) { bmp_release(ai.fds, fd); pthread_rwlock_unlock(&ai.flows_lock); irm_msg__free_unpacked(recv_msg, NULL); return -ENOMEM; } ai.flows[fd].tx_rb = shm_rbuff_open(recv_msg->api, recv_msg->port_id); if (ai.flows[fd].tx_rb == NULL) { reset_flow(fd); bmp_release(ai.fds, fd); pthread_rwlock_unlock(&ai.flows_lock); irm_msg__free_unpacked(recv_msg, NULL); return -ENOMEM; } ai.flows[fd].set = shm_flow_set_open(recv_msg->api); if (ai.flows[fd].set == NULL) { reset_flow(fd); bmp_release(ai.fds, fd); pthread_rwlock_unlock(&ai.flows_lock); irm_msg__free_unpacked(recv_msg, NULL); return -ENOMEM; } ai.flows[fd].port_id = recv_msg->port_id; ai.flows[fd].oflags = FLOW_O_DEFAULT; ai.flows[fd].api = recv_msg->api; ai.flows[fd].cube = recv_msg->qoscube; assert(ai.ports[recv_msg->port_id].state == PORT_INIT); ai.ports[recv_msg->port_id].fd = fd; ai.ports[recv_msg->port_id].state = PORT_ID_ASSIGNED; pthread_rwlock_unlock(&ai.flows_lock); irm_msg__free_unpacked(recv_msg, NULL); return fd; } int flow_dealloc(int fd) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg = NULL; if (fd < 0) return -EINVAL; msg.code = IRM_MSG_CODE__IRM_FLOW_DEALLOC; msg.has_port_id = true; msg.has_api = true; msg.api = ai.api; pthread_rwlock_wrlock(&ai.flows_lock); if (ai.flows[fd].port_id < 0) { bmp_release(ai.fds, fd); pthread_rwlock_unlock(&ai.flows_lock); return 0; } msg.port_id = ai.flows[fd].port_id; pthread_rwlock_unlock(&ai.flows_lock); recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) return -EIRMD; if (!recv_msg->has_result) { irm_msg__free_unpacked(recv_msg, NULL); assert(false); return -1; } irm_msg__free_unpacked(recv_msg, NULL); pthread_rwlock_wrlock(&ai.flows_lock); reset_flow(fd); bmp_release(ai.fds, fd); pthread_rwlock_unlock(&ai.flows_lock); return 0; } int flow_set_flags(int fd, int flags) { int old; if (fd < 0 || fd >= AP_MAX_FLOWS) return -EBADF; pthread_rwlock_wrlock(&ai.flows_lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.flows_lock); return -ENOTALLOC; } old = ai.flows[fd].oflags; ai.flows[fd].oflags = flags; if (flags & FLOW_O_WRONLY) shm_rbuff_block(ai.flows[fd].rx_rb); if (flags & FLOW_O_RDWR) shm_rbuff_unblock(ai.flows[fd].rx_rb); pthread_rwlock_unlock(&ai.flows_lock); return old; } int flow_get_flags(int fd) { int old; if (fd < 0 || fd >= AP_MAX_FLOWS) return -EBADF; pthread_rwlock_wrlock(&ai.flows_lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.flows_lock); return -ENOTALLOC; } old = ai.flows[fd].oflags; pthread_rwlock_unlock(&ai.flows_lock); return old; } int flow_get_timeout(int fd, struct timespec * timeo) { int ret = 0; if (fd < 0 || fd >= AP_MAX_FLOWS || timeo == NULL) return -EINVAL; pthread_rwlock_wrlock(&ai.flows_lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.flows_lock); return -ENOTALLOC; } if (ai.flows[fd].timesout) *timeo = ai.flows[fd].rcv_timeo; else ret = -EPERM; pthread_rwlock_unlock(&ai.flows_lock); return ret; } int flow_set_timeout(int fd, const struct timespec * timeo) { if (fd < 0 || fd >= AP_MAX_FLOWS) return -EINVAL; pthread_rwlock_wrlock(&ai.flows_lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.flows_lock); return -ENOTALLOC; } if (timeo == NULL) { ai.flows[fd].timesout = false; } else { ai.flows[fd].timesout = true; ai.flows[fd].rcv_timeo = *timeo; } pthread_rwlock_unlock(&ai.flows_lock); return 0; } int flow_get_qosspec(int fd, qosspec_t * qs) { if (fd < 0 || fd >= AP_MAX_FLOWS || qs == NULL) return -EINVAL; pthread_rwlock_wrlock(&ai.flows_lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.flows_lock); return -ENOTALLOC; } fill_qosspec(qs, ai.flows[fd].cube); pthread_rwlock_unlock(&ai.flows_lock); return 0; } ssize_t flow_write(int fd, const void * buf, size_t count) { ssize_t idx; if (buf == NULL) return 0; if (fd < 0 || fd >= AP_MAX_FLOWS) return -EBADF; pthread_rwlock_rdlock(&ai.flows_lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.flows_lock); return -ENOTALLOC; } if ((ai.flows[fd].oflags & FLOW_O_ACCMODE) == FLOW_O_RDONLY) { pthread_rwlock_unlock(&ai.flows_lock); return -EPERM; } if (ai.flows[fd].oflags & FLOW_O_NONBLOCK) { idx = shm_rdrbuff_write(ai.rdrb, DU_BUFF_HEADSPACE, DU_BUFF_TAILSPACE, buf, count); if (idx < 0) { pthread_rwlock_unlock(&ai.flows_lock); return idx; } if (shm_rbuff_write(ai.flows[fd].tx_rb, idx) < 0) { shm_rdrbuff_remove(ai.rdrb, idx); pthread_rwlock_unlock(&ai.flows_lock); return -ENOTALLOC; } } else { /* blocking */ struct shm_rdrbuff * rdrb = ai.rdrb; struct shm_rbuff * tx_rb = ai.flows[fd].tx_rb; pthread_rwlock_unlock(&ai.flows_lock); assert(tx_rb); idx = shm_rdrbuff_write_b(rdrb, DU_BUFF_HEADSPACE, DU_BUFF_TAILSPACE, buf, count); if (shm_rbuff_write(tx_rb, idx) < 0) { shm_rdrbuff_remove(rdrb, idx); return -ENOTALLOC; } pthread_rwlock_rdlock(&ai.flows_lock); } shm_flow_set_notify(ai.flows[fd].set, ai.flows[fd].port_id); pthread_rwlock_unlock(&ai.flows_lock); return 0; } ssize_t flow_read(int fd, void * buf, size_t count) { ssize_t idx = -1; ssize_t n; uint8_t * sdu; if (fd < 0 || fd >= AP_MAX_FLOWS) return -EBADF; pthread_rwlock_rdlock(&ai.flows_lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.flows_lock); return -ENOTALLOC; } if (ai.flows[fd].oflags & FLOW_O_NONBLOCK) { idx = shm_rbuff_read(ai.flows[fd].rx_rb); pthread_rwlock_unlock(&ai.flows_lock); } else { struct shm_rbuff * rb = ai.flows[fd].rx_rb; bool timeo = ai.flows[fd].timesout; struct timespec timeout = ai.flows[fd].rcv_timeo; pthread_rwlock_unlock(&ai.flows_lock); if (timeo) idx = shm_rbuff_read_b(rb, &timeout); else idx = shm_rbuff_read_b(rb, NULL); } if (idx < 0) { assert(idx == -EAGAIN || idx == -ETIMEDOUT); return idx; } n = shm_rdrbuff_read(&sdu, ai.rdrb, idx); if (n < 0) return -1; memcpy(buf, sdu, MIN((size_t) n, count)); shm_rdrbuff_remove(ai.rdrb, idx); return n; } /* fqueue functions */ struct flow_set * flow_set_create() { struct flow_set * set = malloc(sizeof(*set)); if (set == NULL) return NULL; assert(ai.fqueues); set->idx = bmp_allocate(ai.fqueues); if (!bmp_is_id_valid(ai.fqueues, set->idx)) { free(set); return NULL; } return set; } void flow_set_destroy(struct flow_set * set) { if (set == NULL) return; flow_set_zero(set); bmp_release(ai.fqueues, set->idx); free(set); } struct fqueue * fqueue_create() { struct fqueue * fq = malloc(sizeof(*fq)); if (fq == NULL) return NULL; memset(fq->fqueue, -1, (SHM_BUFFER_SIZE) * sizeof(*fq->fqueue)); fq->fqsize = 0; fq->next = 0; return fq; } void fqueue_destroy(struct fqueue * fq) { if (fq == NULL) return; free(fq); } void flow_set_zero(struct flow_set * set) { if (set == NULL) return; shm_flow_set_zero(ai.fqset, set->idx); } int flow_set_add(struct flow_set * set, int fd) { int ret; size_t sdus; size_t i; if (set == NULL) return -EINVAL; pthread_rwlock_rdlock(&ai.flows_lock); ret = shm_flow_set_add(ai.fqset, set->idx, ai.flows[fd].port_id); sdus = shm_rbuff_queued(ai.flows[fd].rx_rb); for (i = 0; i < sdus; i++) shm_flow_set_notify(ai.fqset, ai.flows[fd].port_id); pthread_rwlock_unlock(&ai.flows_lock); return ret; } void flow_set_del(struct flow_set * set, int fd) { if (set == NULL) return; pthread_rwlock_rdlock(&ai.flows_lock); if (ai.flows[fd].port_id >= 0) shm_flow_set_del(ai.fqset, set->idx, ai.flows[fd].port_id); pthread_rwlock_unlock(&ai.flows_lock); } bool flow_set_has(const struct flow_set * set, int fd) { bool ret = false; if (set == NULL || fd < 0) return false; pthread_rwlock_rdlock(&ai.flows_lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.flows_lock); return false; } ret = (shm_flow_set_has(ai.fqset, set->idx, ai.flows[fd].port_id) == 1); pthread_rwlock_unlock(&ai.flows_lock); return ret; } int fqueue_next(struct fqueue * fq) { int fd; if (fq == NULL) return -EINVAL; if (fq->fqsize == 0) return -EPERM; pthread_rwlock_rdlock(&ai.flows_lock); fd = ai.ports[fq->fqueue[fq->next++]].fd; pthread_rwlock_unlock(&ai.flows_lock); if (fq->next == fq->fqsize) { fq->fqsize = 0; fq->next = 0; } return fd; } int flow_event_wait(struct flow_set * set, struct fqueue * fq, const struct timespec * timeout) { ssize_t ret; if (set == NULL || fq == NULL) return -EINVAL; if (fq->fqsize > 0) return fq->fqsize; assert(!fq->next); ret = shm_flow_set_wait(ai.fqset, set->idx, fq->fqueue, timeout); if (ret == -ETIMEDOUT) { fq->fqsize = 0; return -ETIMEDOUT; } fq->fqsize = ret; assert(ret); return ret; } /* ipcp-dev functions */ int np1_flow_alloc(pid_t n_api, int port_id) { int fd; pthread_rwlock_wrlock(&ai.flows_lock); fd = bmp_allocate(ai.fds); if (!bmp_is_id_valid(ai.fds, fd)) { pthread_rwlock_unlock(&ai.flows_lock); return -1; } ai.flows[fd].rx_rb = shm_rbuff_open(ai.api, port_id); if (ai.flows[fd].rx_rb == NULL) { reset_flow(fd); pthread_rwlock_unlock(&ai.flows_lock); return -1; } ai.flows[fd].tx_rb = shm_rbuff_open(n_api, port_id); if (ai.flows[fd].tx_rb == NULL) { reset_flow(fd); pthread_rwlock_unlock(&ai.flows_lock); return -1; } ai.flows[fd].set = shm_flow_set_open(n_api); if (ai.flows[fd].set == NULL) { reset_flow(fd); pthread_rwlock_unlock(&ai.flows_lock); return -1; } ai.flows[fd].port_id = port_id; ai.flows[fd].oflags = FLOW_O_DEFAULT; ai.flows[fd].api = n_api; ai.ports[port_id].fd = fd; ai.ports[port_id].state = PORT_ID_ASSIGNED; pthread_rwlock_unlock(&ai.flows_lock); return fd; } int np1_flow_dealloc(int port_id) { int fd; pthread_rwlock_rdlock(&ai.flows_lock); fd = ai.ports[port_id].fd; pthread_rwlock_unlock(&ai.flows_lock); return fd; } int np1_flow_resp(int port_id) { int fd; if (port_wait_assign(&ai.ports[port_id]) != PORT_ID_ASSIGNED) return -1; pthread_rwlock_rdlock(&ai.flows_lock); fd = ai.ports[port_id].fd; pthread_rwlock_unlock(&ai.flows_lock); return fd; } int ipcp_create_r(pid_t api, int result) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg = NULL; int ret = -1; msg.code = IRM_MSG_CODE__IPCP_CREATE_R; msg.has_api = true; msg.api = api; msg.has_result = true; msg.result = result; recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) return -EIRMD; if (recv_msg->has_result == false) { irm_msg__free_unpacked(recv_msg, NULL); return -1; } ret = recv_msg->result; irm_msg__free_unpacked(recv_msg, NULL); return ret; } int ipcp_flow_req_arr(pid_t api, uint8_t * dst, size_t len, qoscube_t cube) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg = NULL; int port_id = -1; int fd = -1; if (dst == NULL) return -EINVAL; msg.code = IRM_MSG_CODE__IPCP_FLOW_REQ_ARR; msg.has_api = true; msg.api = api; msg.has_hash = true; msg.hash.len = len; msg.hash.data = dst; msg.has_qoscube = true; msg.qoscube = cube; pthread_rwlock_wrlock(&ai.flows_lock); fd = bmp_allocate(ai.fds); if (!bmp_is_id_valid(ai.fds, fd)) { pthread_rwlock_unlock(&ai.flows_lock); return -1; /* -ENOMOREFDS */ } pthread_rwlock_unlock(&ai.flows_lock); recv_msg = send_recv_irm_msg(&msg); pthread_rwlock_wrlock(&ai.flows_lock); if (recv_msg == NULL) { ai.ports[fd].state = PORT_INIT; pthread_rwlock_unlock(&ai.flows_lock); return -EIRMD; } if (!recv_msg->has_port_id || !recv_msg->has_api) { ai.ports[fd].state = PORT_INIT; pthread_rwlock_unlock(&ai.flows_lock); irm_msg__free_unpacked(recv_msg, NULL); return -1; } if (recv_msg->has_result && recv_msg->result) { ai.ports[fd].state = PORT_INIT; pthread_rwlock_unlock(&ai.flows_lock); irm_msg__free_unpacked(recv_msg, NULL); return -1; } port_id = recv_msg->port_id; if (port_id < 0) { ai.ports[fd].state = PORT_INIT; pthread_rwlock_unlock(&ai.flows_lock); irm_msg__free_unpacked(recv_msg, NULL); return -1; } ai.flows[fd].rx_rb = shm_rbuff_open(ai.api, port_id); if (ai.flows[fd].rx_rb == NULL) { reset_flow(fd); pthread_rwlock_unlock(&ai.flows_lock); irm_msg__free_unpacked(recv_msg, NULL); return -1; } ai.flows[fd].tx_rb = shm_rbuff_open(recv_msg->api, port_id); if (ai.flows[fd].tx_rb == NULL) { reset_flow(fd); pthread_rwlock_unlock(&ai.flows_lock); irm_msg__free_unpacked(recv_msg, NULL); return -1; } ai.flows[fd].set = shm_flow_set_open(recv_msg->api); if (ai.flows[fd].set == NULL) { reset_flow(fd); pthread_rwlock_unlock(&ai.flows_lock); irm_msg__free_unpacked(recv_msg, NULL); return -1; } ai.flows[fd].port_id = port_id; ai.flows[fd].oflags = FLOW_O_DEFAULT; ai.ports[port_id].fd = fd; port_set_state(&ai.ports[port_id], PORT_ID_ASSIGNED); pthread_rwlock_unlock(&ai.flows_lock); irm_msg__free_unpacked(recv_msg, NULL); return fd; } int ipcp_flow_alloc_reply(int fd, int response) { irm_msg_t msg = IRM_MSG__INIT; irm_msg_t * recv_msg = NULL; int ret = -1; msg.code = IRM_MSG_CODE__IPCP_FLOW_ALLOC_REPLY; msg.has_port_id = true; pthread_rwlock_rdlock(&ai.flows_lock); msg.port_id = ai.flows[fd].port_id; pthread_rwlock_unlock(&ai.flows_lock); msg.has_response = true; msg.response = response; recv_msg = send_recv_irm_msg(&msg); if (recv_msg == NULL) return -EIRMD; if (recv_msg->has_result == false) { irm_msg__free_unpacked(recv_msg, NULL); return -1; } ret = recv_msg->result; irm_msg__free_unpacked(recv_msg, NULL); return ret; } int ipcp_flow_read(int fd, struct shm_du_buff ** sdb) { ssize_t idx = -1; int port_id = -1; struct shm_rbuff * rb; assert(fd >=0); assert(sdb); pthread_rwlock_rdlock(&ai.flows_lock); if ((port_id = ai.flows[fd].port_id) < 0) { pthread_rwlock_unlock(&ai.flows_lock); return -ENOTALLOC; } rb = ai.flows[fd].rx_rb; pthread_rwlock_unlock(&ai.flows_lock); idx = shm_rbuff_read(rb); if (idx < 0) return idx; *sdb = shm_rdrbuff_get(ai.rdrb, idx); return 0; } int ipcp_flow_write(int fd, struct shm_du_buff * sdb) { size_t idx; if (sdb == NULL) return -EINVAL; pthread_rwlock_rdlock(&ai.flows_lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.flows_lock); return -ENOTALLOC; } if ((ai.flows[fd].oflags & FLOW_O_ACCMODE) == FLOW_O_RDONLY) { pthread_rwlock_unlock(&ai.flows_lock); return -EPERM; } assert(ai.flows[fd].tx_rb); idx = shm_du_buff_get_idx(sdb); shm_rbuff_write(ai.flows[fd].tx_rb, idx); shm_flow_set_notify(ai.flows[fd].set, ai.flows[fd].port_id); pthread_rwlock_unlock(&ai.flows_lock); return 0; } int ipcp_sdb_reserve(struct shm_du_buff ** sdb, size_t len) { struct shm_rdrbuff * rdrb; ssize_t idx; rdrb = ai.rdrb; idx = shm_rdrbuff_write_b(rdrb, DU_BUFF_HEADSPACE, DU_BUFF_TAILSPACE, NULL, len); if (idx < 0) return -1; *sdb = shm_rdrbuff_get(rdrb, idx); return 0; } int ipcp_flow_fini(int fd) { struct shm_rbuff * rx_rb; flow_set_flags(fd, FLOW_O_WRONLY); pthread_rwlock_rdlock(&ai.flows_lock); rx_rb = ai.flows[fd].rx_rb; pthread_rwlock_unlock(&ai.flows_lock); shm_rbuff_fini(rx_rb); return 0; } int ipcp_flow_get_qoscube(int fd, qoscube_t * cube) { if (fd < 0 || fd >= AP_MAX_FLOWS || cube == NULL) return -EINVAL; pthread_rwlock_wrlock(&ai.flows_lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.flows_lock); return -ENOTALLOC; } *cube = ai.flows[fd].cube; pthread_rwlock_unlock(&ai.flows_lock); return 0; } ssize_t local_flow_read(int fd) { ssize_t ret; assert(fd >= 0); pthread_rwlock_rdlock(&ai.flows_lock); ret = shm_rbuff_read(ai.flows[fd].rx_rb); pthread_rwlock_unlock(&ai.flows_lock); return ret; } int local_flow_write(int fd, size_t idx) { if (fd < 0) return -EINVAL; pthread_rwlock_rdlock(&ai.flows_lock); if (ai.flows[fd].port_id < 0) { pthread_rwlock_unlock(&ai.flows_lock); return -ENOTALLOC; } shm_rbuff_write(ai.flows[fd].tx_rb, idx); shm_flow_set_notify(ai.flows[fd].set, ai.flows[fd].port_id); pthread_rwlock_unlock(&ai.flows_lock); return 0; } int ipcp_read_shim(int fd, struct shm_du_buff ** sdb) { ssize_t idx; pthread_rwlock_rdlock(&ai.flows_lock); assert(ai.flows[fd].rx_rb); idx = shm_rbuff_read(ai.flows[fd].rx_rb); if (idx < 0) { pthread_rwlock_unlock(&ai.flows_lock); return -EAGAIN; } *sdb = shm_rdrbuff_get(ai.rdrb, idx); pthread_rwlock_unlock(&ai.flows_lock); return 0; } void ipcp_sdb_release(struct shm_du_buff * sdb) { shm_rdrbuff_remove(ai.rdrb, shm_du_buff_get_idx(sdb)); }