/* * Ouroboros - Copyright (C) 2016 - 2017 * * The IPC Resource Manager * * Dimitri Staessens <dimitri.staessens@ugent.be> * Sander Vrijders <sander.vrijders@ugent.be> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define OUROBOROS_PREFIX "irmd" #include <ouroboros/config.h> #include <ouroboros/hash.h> #include <ouroboros/errno.h> #include <ouroboros/sockets.h> #include <ouroboros/list.h> #include <ouroboros/utils.h> #include <ouroboros/irm.h> #include <ouroboros/lockfile.h> #include <ouroboros/shm_flow_set.h> #include <ouroboros/shm_rbuff.h> #include <ouroboros/shm_rdrbuff.h> #include <ouroboros/bitmap.h> #include <ouroboros/qos.h> #include <ouroboros/time_utils.h> #include <ouroboros/tpm.h> #include <ouroboros/logs.h> #include "utils.h" #include "registry.h" #include "irm_flow.h" #include "api_table.h" #include "ipcp.h" #include <sys/socket.h> #include <sys/un.h> #include <signal.h> #include <stdlib.h> #include <string.h> #include <limits.h> #include <pthread.h> #include <sys/stat.h> #include <sys/wait.h> #define IRMD_CLEANUP_TIMER ((IRMD_FLOW_TIMEOUT / 20) * MILLION) /* ns */ #define SHM_SAN_HOLDOFF 1000 /* ms */ #define IPCP_HASH_LEN(e) hash_len(e->dir_hash_algo) #define SHIM_ETH_LLC_HASH_ALGO HASH_SHA3_256 #define SHIM_UDP_HASH_ALGO HASH_MD5 #define LOCAL_HASH_ALGO HASH_SHA3_256 struct ipcp_entry { struct list_head next; char * name; pid_t api; enum ipcp_type type; enum hash_algo dir_hash_algo; char * dif_name; pthread_cond_t init_cond; pthread_mutex_t init_lock; bool init; }; enum irm_state { IRMD_NULL = 0, IRMD_RUNNING }; struct irm { struct list_head registry; /* registered names known */ struct list_head ipcps; /* list of ipcps in system */ struct list_head api_table; /* ap instances */ struct list_head apn_table; /* ap names known */ struct list_head spawned_apis; /* child ap instances */ pthread_rwlock_t reg_lock; /* lock for registration info */ struct bmp * port_ids; /* port_ids for flows */ struct list_head irm_flows; /* flow information */ pthread_rwlock_t flows_lock; /* lock for flows */ struct lockfile * lf; /* single irmd per system */ struct shm_rdrbuff * rdrb; /* rdrbuff for SDUs */ int sockfd; /* UNIX socket */ enum irm_state state; /* state of the irmd */ pthread_rwlock_t state_lock; /* lock for the entire irmd */ pthread_t irm_sanitize; /* clean up irmd resources */ pthread_t shm_sanitize; /* keep track of rdrbuff use */ } irmd; static enum irm_state irmd_get_state(void) { enum irm_state state; pthread_rwlock_rdlock(&irmd.state_lock); state = irmd.state; pthread_rwlock_unlock(&irmd.state_lock); return state; } static void irmd_set_state(enum irm_state state) { pthread_rwlock_wrlock(&irmd.state_lock); irmd.state = state; pthread_rwlock_unlock(&irmd.state_lock); } static void clear_irm_flow(struct irm_flow * f) { ssize_t idx; assert(f); while ((idx = shm_rbuff_read(f->n_rb)) >= 0) shm_rdrbuff_remove(irmd.rdrb, idx); while ((idx = shm_rbuff_read(f->n_1_rb)) >= 0) shm_rdrbuff_remove(irmd.rdrb, idx); } static struct irm_flow * get_irm_flow(int port_id) { struct list_head * pos = NULL; list_for_each(pos, &irmd.irm_flows) { struct irm_flow * e = list_entry(pos, struct irm_flow, next); if (e->port_id == port_id) return e; } return NULL; } static struct irm_flow * get_irm_flow_n(pid_t n_api) { struct list_head * pos = NULL; list_for_each(pos, &irmd.irm_flows) { struct irm_flow * e = list_entry(pos, struct irm_flow, next); if (e->n_api == n_api && irm_flow_get_state(e) == FLOW_ALLOC_PENDING) return e; } return NULL; } static struct ipcp_entry * ipcp_entry_create(void) { struct ipcp_entry * e = malloc(sizeof(*e)); if (e == NULL) return NULL; e->name = NULL; e->dif_name = NULL; list_head_init(&e->next); return e; } static void ipcp_entry_destroy(struct ipcp_entry * e) { if (e == NULL) return; if (e->name != NULL) free(e->name); if (e->dif_name != NULL) free(e->dif_name); free(e); } static struct ipcp_entry * get_ipcp_entry_by_api(pid_t api) { struct list_head * p = NULL; list_for_each(p, &irmd.ipcps) { struct ipcp_entry * e = list_entry(p, struct ipcp_entry, next); if (api == e->api) return e; } return NULL; } static struct ipcp_entry * get_ipcp_entry_by_name(const char * name) { struct list_head * p = NULL; list_for_each(p, &irmd.ipcps) { struct ipcp_entry * e = list_entry(p, struct ipcp_entry, next); if (strcmp(name, e->name) == 0) return e; } return NULL; } static struct ipcp_entry * get_ipcp_by_dst_name(const char * name, pid_t src) { struct list_head * p; struct list_head * h; uint8_t * hash; pid_t api; pthread_rwlock_rdlock(&irmd.reg_lock); list_for_each_safe(p, h, &irmd.ipcps) { struct ipcp_entry * e = list_entry(p, struct ipcp_entry, next); if (e->dif_name == NULL || e->api == src) continue; hash = malloc(IPCP_HASH_LEN(e)); if (hash == NULL) return NULL; str_hash(e->dir_hash_algo, hash, name); api = e->api; pthread_rwlock_unlock(&irmd.reg_lock); if (ipcp_query(api, hash, IPCP_HASH_LEN(e)) == 0) { free(hash); return e; } free(hash); pthread_rwlock_rdlock(&irmd.reg_lock); } pthread_rwlock_unlock(&irmd.reg_lock); return NULL; } static pid_t create_ipcp(char * name, enum ipcp_type ipcp_type) { struct pid_el * api = NULL; struct ipcp_entry * tmp = NULL; struct list_head * p = NULL; struct ipcp_entry * entry = NULL; api = malloc(sizeof(*api)); if (api == NULL) return -ENOMEM; pthread_rwlock_wrlock(&irmd.reg_lock); entry = get_ipcp_entry_by_name(name); if (entry != NULL) { pthread_rwlock_unlock(&irmd.reg_lock); log_err("IPCP by that name already exists."); return -1; } api->pid = ipcp_create(name, ipcp_type); if (api->pid == -1) { pthread_rwlock_unlock(&irmd.reg_lock); log_err("Failed to create IPCP."); return -1; } tmp = ipcp_entry_create(); if (tmp == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); return -1; } list_head_init(&tmp->next); tmp->api = api->pid; tmp->name = strdup(name); if (tmp->name == NULL) { ipcp_entry_destroy(tmp); pthread_rwlock_unlock(&irmd.reg_lock); return -1; } pthread_cond_init(&tmp->init_cond, NULL); pthread_mutex_init(&tmp->init_lock, NULL); tmp->dif_name = NULL; tmp->type = ipcp_type; tmp->init = false; tmp->dir_hash_algo = -1; list_for_each(p, &irmd.ipcps) { struct ipcp_entry * e = list_entry(p, struct ipcp_entry, next); if (e->type > ipcp_type) break; } list_add_tail(&tmp->next, p); list_add(&api->next, &irmd.spawned_apis); pthread_rwlock_unlock(&irmd.reg_lock); pthread_mutex_lock(&tmp->init_lock); while (tmp->init == false) pthread_cond_wait(&tmp->init_cond, &tmp->init_lock); pthread_mutex_unlock(&tmp->init_lock); log_info("Created IPCP %d.", api->pid); return api->pid; } static int create_ipcp_r(pid_t api, int result) { struct list_head * pos = NULL; if (result != 0) return result; pthread_rwlock_rdlock(&irmd.reg_lock); list_for_each(pos, &irmd.ipcps) { struct ipcp_entry * e = list_entry(pos, struct ipcp_entry, next); if (e->api == api) { pthread_mutex_lock(&e->init_lock); e->init = true; pthread_cond_broadcast(&e->init_cond); pthread_mutex_unlock(&e->init_lock); } } pthread_rwlock_unlock(&irmd.reg_lock); return 0; } static void clear_spawned_api(pid_t api) { struct list_head * pos = NULL; struct list_head * n = NULL; list_for_each_safe(pos, n, &(irmd.spawned_apis)) { struct pid_el * a = list_entry(pos, struct pid_el, next); if (api == a->pid) { list_del(&a->next); free(a); } } } static int destroy_ipcp(pid_t api) { struct list_head * pos = NULL; struct list_head * n = NULL; pthread_rwlock_wrlock(&irmd.reg_lock); list_for_each_safe(pos, n, &(irmd.ipcps)) { struct ipcp_entry * tmp = list_entry(pos, struct ipcp_entry, next); if (api == tmp->api) { clear_spawned_api(api); if (ipcp_destroy(api)) log_err("Could not destroy IPCP."); list_del(&tmp->next); ipcp_entry_destroy(tmp); log_info("Destroyed IPCP %d.", api); } } pthread_rwlock_unlock(&irmd.reg_lock); return 0; } static int bootstrap_ipcp(pid_t api, ipcp_config_msg_t * conf) { struct ipcp_entry * entry = NULL; pthread_rwlock_wrlock(&irmd.reg_lock); entry = get_ipcp_entry_by_api(api); if (entry == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); log_err("No such IPCP."); return -1; } if (entry->type != (enum ipcp_type) conf->ipcp_type) { pthread_rwlock_unlock(&irmd.reg_lock); log_err("Configuration does not match IPCP type."); return -1; } if (entry->type == IPCP_LOCAL) entry->dir_hash_algo = conf->dif_info->dir_hash_algo = LOCAL_HASH_ALGO; else if (entry->type == IPCP_SHIM_ETH_LLC) entry->dir_hash_algo = conf->dif_info->dir_hash_algo = SHIM_ETH_LLC_HASH_ALGO; else if (entry->type == IPCP_SHIM_UDP) entry->dir_hash_algo = conf->dif_info->dir_hash_algo = SHIM_UDP_HASH_ALGO; else entry->dir_hash_algo = conf->dif_info->dir_hash_algo; if (ipcp_bootstrap(entry->api, conf)) { pthread_rwlock_unlock(&irmd.reg_lock); log_err("Could not bootstrap IPCP."); return -1; } entry->dif_name = strdup(conf->dif_info->dif_name); if (entry->dif_name == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); log_warn("Failed to set name of DIF."); return -ENOMEM; } pthread_rwlock_unlock(&irmd.reg_lock); log_info("Bootstrapped IPCP %d in DIF %s.", entry->api, conf->dif_info->dif_name); return 0; } static int enroll_ipcp(pid_t api, char * dst_name) { struct ipcp_entry * entry = NULL; struct dif_info info; pthread_rwlock_wrlock(&irmd.reg_lock); entry = get_ipcp_entry_by_api(api); if (entry == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); log_err("No such IPCP."); return -1; } if (entry->dif_name != NULL) { pthread_rwlock_unlock(&irmd.reg_lock); log_err("IPCP in wrong state"); return -1; } pthread_rwlock_unlock(&irmd.reg_lock); if (ipcp_enroll(api, dst_name, &info) < 0) { log_err("Could not enroll IPCP %d.", api); return -1; } pthread_rwlock_wrlock(&irmd.reg_lock); entry = get_ipcp_entry_by_api(api); if (entry == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); log_err("No such IPCP."); return -1; } entry->dif_name = strdup(info.dif_name); if (entry->dif_name == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); log_err("Failed to strdup dif_name."); return -ENOMEM; } entry->dir_hash_algo = info.dir_hash_algo; pthread_rwlock_unlock(&irmd.reg_lock); log_info("Enrolled IPCP %d in DIF %s.", api, info.dif_name); return 0; } static int bind_ap(char * ap, char * name, uint16_t flags, int argc, char ** argv) { char * aps; char * apn; char ** argv_dup = NULL; int i; char * name_dup = NULL; struct apn_entry * e = NULL; struct reg_entry * re = NULL; if (ap == NULL || name == NULL) return -EINVAL; pthread_rwlock_wrlock(&irmd.reg_lock); e = apn_table_get(&irmd.apn_table, path_strip(ap)); if (e == NULL) { aps = strdup(path_strip(ap)); if (aps == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); return -ENOMEM; } apn = strdup(name); if (apn == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); free(aps); return -ENOMEM; } if ((flags & BIND_AP_AUTO) && argc) { /* We need to duplicate argv and set argv[0] to ap. */ argv_dup = malloc((argc + 2) * sizeof(*argv_dup)); argv_dup[0] = strdup(ap); for (i = 1; i <= argc; ++i) { argv_dup[i] = strdup(argv[i - 1]); if (argv_dup[i] == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); argvfree(argv_dup); log_err("Failed to bind ap %s to %s.", ap, name); free(aps); free(apn); return -ENOMEM; } } argv_dup[argc + 1] = NULL; } e = apn_entry_create(apn, aps, flags, argv_dup); if (e == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); free(aps); free(apn); argvfree(argv_dup); return -ENOMEM; } apn_table_add(&irmd.apn_table, e); } name_dup = strdup(name); if (name_dup == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); return -ENOMEM; } if (apn_entry_add_name(e, name_dup)) { log_err("Failed adding name."); pthread_rwlock_unlock(&irmd.reg_lock); free(name_dup); return -ENOMEM; } re = registry_get_entry(&irmd.registry, name); if (re != NULL && reg_entry_add_apn(re, e) < 0) log_err("Failed adding AP %s for name %s.", ap, name); pthread_rwlock_unlock(&irmd.reg_lock); log_info("Bound AP %s to name %s.", ap, name); return 0; } static int bind_api(pid_t api, char * name) { char * name_dup = NULL; struct api_entry * e = NULL; struct reg_entry * re = NULL; if (name == NULL) return -EINVAL; pthread_rwlock_wrlock(&irmd.reg_lock); e = api_table_get(&irmd.api_table, api); if (e == NULL) { log_err("AP-I %d does not exist.", api); pthread_rwlock_unlock(&irmd.reg_lock); return -1; } name_dup = strdup(name); if (name_dup == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); return -ENOMEM; } if (api_entry_add_name(e, name_dup)) { pthread_rwlock_unlock(&irmd.reg_lock); log_err("Failed to add name %s to api %d.", name, api); free(name_dup); return -1; } re = registry_get_entry(&irmd.registry, name); if (re != NULL && reg_entry_add_api(re, api) < 0) log_err("Failed adding AP-I %d for name %s.", api, name); pthread_rwlock_unlock(&irmd.reg_lock); log_info("Bound AP-I %d to name %s.", api, name); return 0; } static int unbind_ap(char * ap, char * name) { struct reg_entry * e; if (ap == NULL) return -EINVAL; pthread_rwlock_wrlock(&irmd.reg_lock); if (name == NULL) apn_table_del(&irmd.apn_table, ap); else { struct apn_entry * e = apn_table_get(&irmd.apn_table, ap); apn_entry_del_name(e, name); } e = registry_get_entry(&irmd.registry, name); if (e != NULL) reg_entry_del_apn(e, ap); pthread_rwlock_unlock(&irmd.reg_lock); if (name == NULL) log_info("AP %s removed.", ap); else log_info("All names matching %s cleared for %s.", name, ap); return 0; } static int unbind_api(pid_t api, const char * name) { struct reg_entry * e; pthread_rwlock_wrlock(&irmd.reg_lock); if (name == NULL) api_table_del(&irmd.api_table, api); else { struct api_entry * e = api_table_get(&irmd.api_table, api); api_entry_del_name(e, name); } e = registry_get_entry(&irmd.registry, name); if (e != NULL) reg_entry_del_api(e, api); pthread_rwlock_unlock(&irmd.reg_lock); if (name == NULL) log_info("AP-I %d removed.", api); else log_info("All names matching %s cleared for %d.", name, api); return 0; } static ssize_t list_ipcps(char * name, pid_t ** apis) { struct list_head * pos = NULL; size_t count = 0; int i = 0; pthread_rwlock_rdlock(&irmd.reg_lock); list_for_each(pos, &irmd.ipcps) { struct ipcp_entry * tmp = list_entry(pos, struct ipcp_entry, next); if (wildcard_match(name, tmp->name) == 0) count++; } *apis = malloc(count * sizeof(pid_t)); if (*apis == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); return -1; } list_for_each(pos, &irmd.ipcps) { struct ipcp_entry * tmp = list_entry(pos, struct ipcp_entry, next); if (wildcard_match(name, tmp->name) == 0) (*apis)[i++] = tmp->api; } pthread_rwlock_unlock(&irmd.reg_lock); return count; } static int name_reg(const char * name, char ** difs, size_t len) { size_t i; int ret = 0; struct list_head * p = NULL; assert(name); assert(len); assert(difs); assert(difs[0]); pthread_rwlock_wrlock(&irmd.reg_lock); if (list_is_empty(&irmd.ipcps)) { pthread_rwlock_unlock(&irmd.reg_lock); return -1; } if (!registry_has_name(&irmd.registry, name)) { struct reg_entry * re = registry_add_name(&irmd.registry, name); if (re == NULL) { log_err("Failed creating registry entry for %s.", name); pthread_rwlock_unlock(&irmd.reg_lock); return -1; } /* check the tables for client APs */ list_for_each(p, &irmd.api_table) { struct list_head * q; struct api_entry * e = list_entry(p, struct api_entry, next); list_for_each(q, &e->names) { struct str_el * s = list_entry(q, struct str_el, next); if (!strcmp(s->str, name)) reg_entry_add_api(re, e->api); } } list_for_each(p, &irmd.apn_table) { struct list_head * q; struct apn_entry * e = list_entry(p, struct apn_entry, next); list_for_each(q, &e->names) { struct str_el * s = list_entry(q, struct str_el, next); if (!strcmp(s->str, name)) reg_entry_add_apn(re, e); } } } list_for_each(p, &irmd.ipcps) { struct ipcp_entry * e = list_entry(p, struct ipcp_entry, next); if (e->dif_name == NULL) continue; for (i = 0; i < len; ++i) { uint8_t * hash; if (wildcard_match(difs[i], e->dif_name)) continue; hash = malloc(IPCP_HASH_LEN(e)); if (hash == NULL) break; str_hash(e->dir_hash_algo, hash, name); if (ipcp_reg(e->api, hash, IPCP_HASH_LEN(e))) { log_err("Could not register " HASH_FMT " in DIF %s.", HASH_VAL(hash), e->dif_name); } else { if (registry_add_name_to_dif(&irmd.registry, name, e->dif_name, e->type) < 0) log_warn("Registered unbound name %s. " "Registry may be corrupt.", name); log_info("Registered %s in %s as " HASH_FMT ".", name, e->dif_name, HASH_VAL(hash)); ++ret; } free(hash); } } pthread_rwlock_unlock(&irmd.reg_lock); return (ret > 0 ? 0 : -1); } static int name_unreg(const char * name, char ** difs, size_t len) { size_t i; int ret = 0; struct list_head * pos = NULL; assert(name); assert(len); assert(difs); assert(difs[0]); pthread_rwlock_wrlock(&irmd.reg_lock); list_for_each(pos, &irmd.ipcps) { struct ipcp_entry * e = list_entry(pos, struct ipcp_entry, next); if (e->dif_name == NULL) continue; for (i = 0; i < len; ++i) { uint8_t * hash; if (wildcard_match(difs[i], e->dif_name)) continue; hash = malloc(IPCP_HASH_LEN(e)); if (hash == NULL) break; str_hash(e->dir_hash_algo, hash, name); if (ipcp_unreg(e->api, hash, IPCP_HASH_LEN(e))) { log_err("Could not unregister %s in DIF %s.", name, e->dif_name); } else { registry_del_name_from_dif(&irmd.registry, name, e->dif_name); log_info("Unregistered %s from %s.", name, e->dif_name); ++ret; } free(hash); } } pthread_rwlock_unlock(&irmd.reg_lock); return (ret > 0 ? 0 : -1); } static int api_announce(pid_t api, char * apn) { struct api_entry * e = NULL; struct apn_entry * a = NULL; char * apn_dup; if (apn == NULL) return -EINVAL; apn_dup = strdup(apn); if (apn_dup == NULL) { return -ENOMEM; } e = api_entry_create(api, apn_dup); if (e == NULL) { return -ENOMEM; } pthread_rwlock_wrlock(&irmd.reg_lock); api_table_add(&irmd.api_table, e); /* Copy listen names from apn if it exists. */ a = apn_table_get(&irmd.apn_table, e->apn); if (a != NULL) { struct list_head * p; list_for_each(p, &a->names) { struct str_el * s = list_entry(p, struct str_el, next); struct str_el * n = malloc(sizeof(*n)); if (n == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); return -ENOMEM; } n->str = strdup(s->str); if (n->str == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); free(n); } list_add(&n->next, &e->names); log_dbg("AP-I %d inherits listen name %s from AP %s.", api, n->str, e->apn); } } pthread_rwlock_unlock(&irmd.reg_lock); return 0; } static int flow_accept(pid_t api, struct timespec * timeo, struct irm_flow ** fl) { struct irm_flow * f = NULL; struct api_entry * e = NULL; struct reg_entry * re = NULL; struct list_head * p = NULL; struct timespec dl; struct timespec now; pid_t api_n1; pid_t api_n; int port_id; int ret; if (timeo != NULL) { clock_gettime(PTHREAD_COND_CLOCK, &now); ts_add(&now, timeo, &dl); } pthread_rwlock_wrlock(&irmd.reg_lock); e = api_table_get(&irmd.api_table, api); if (e == NULL) { /* Can only happen if server called ouroboros_init(NULL); */ pthread_rwlock_unlock(&irmd.reg_lock); log_err("Unknown instance %d calling accept.", api); return -EINVAL; } log_dbg("New instance (%d) of %s added.", api, e->apn); log_dbg("This instance accepts flows for:"); list_for_each(p, &e->names) { struct str_el * s = list_entry(p, struct str_el, next); log_dbg(" %s", s->str); re = registry_get_entry(&irmd.registry, s->str); if (re != NULL) reg_entry_add_api(re, api); } pthread_rwlock_unlock(&irmd.reg_lock); while (true) { if (timeo != NULL && ts_diff_ns(&now, &dl) < 0) { log_dbg("Accept timed out."); return -ETIMEDOUT; } if (irmd_get_state() != IRMD_RUNNING) return -EIRMD; ret = api_entry_sleep(e); if (ret == -ETIMEDOUT) { clock_gettime(PTHREAD_COND_CLOCK, &now); api_entry_cancel(e); continue; } if (ret == -1) return -EPIPE; if (ret == 0) break; } if (irmd_get_state() != IRMD_RUNNING) { reg_entry_set_state(re, REG_NAME_NULL); return -EIRMD; } pthread_rwlock_rdlock(&irmd.flows_lock); f = get_irm_flow_n(api); if (f == NULL) { pthread_rwlock_unlock(&irmd.flows_lock); log_warn("Port_id was not created yet."); return -EPERM; } api_n = f->n_api; api_n1 = f->n_1_api; port_id = f->port_id; pthread_rwlock_unlock(&irmd.flows_lock); pthread_rwlock_rdlock(&irmd.reg_lock); e = api_table_get(&irmd.api_table, api); if (e == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); pthread_rwlock_wrlock(&irmd.flows_lock); list_del(&f->next); bmp_release(irmd.port_ids, f->port_id); pthread_rwlock_unlock(&irmd.flows_lock); ipcp_flow_alloc_resp(api_n1, port_id, api_n, -1); clear_irm_flow(f); irm_flow_set_state(f, FLOW_NULL); irm_flow_destroy(f); log_dbg("Process gone while accepting flow."); return -EPERM; } pthread_mutex_lock(&e->state_lock); re = e->re; pthread_mutex_unlock(&e->state_lock); if (reg_entry_get_state(re) != REG_NAME_FLOW_ARRIVED) { pthread_rwlock_unlock(&irmd.reg_lock); pthread_rwlock_wrlock(&irmd.flows_lock); list_del(&f->next); bmp_release(irmd.port_ids, f->port_id); pthread_rwlock_unlock(&irmd.flows_lock); ipcp_flow_alloc_resp(api_n1, port_id, api_n, -1); clear_irm_flow(f); irm_flow_set_state(f, FLOW_NULL); irm_flow_destroy(f); log_err("Entry in wrong state."); return -EPERM; } registry_del_api(&irmd.registry, api); pthread_rwlock_unlock(&irmd.reg_lock); if (ipcp_flow_alloc_resp(api_n1, port_id, api_n, 0)) { pthread_rwlock_wrlock(&irmd.flows_lock); list_del(&f->next); pthread_rwlock_unlock(&irmd.flows_lock); log_dbg("Failed to respond to alloc. Port_id invalidated."); clear_irm_flow(f); irm_flow_set_state(f, FLOW_NULL); irm_flow_destroy(f); return -EPERM; } irm_flow_set_state(f, FLOW_ALLOCATED); log_info("Flow on port_id %d allocated.", f->port_id); *fl = f; return 0; } static int flow_alloc(pid_t api, const char * dst, qoscube_t cube, struct timespec * timeo, struct irm_flow ** e) { struct irm_flow * f; struct ipcp_entry * ipcp; int port_id; int state; uint8_t * hash; ipcp = get_ipcp_by_dst_name(dst, api); if (ipcp == NULL) { log_info("Destination %s unreachable.", dst); return -1; } pthread_rwlock_wrlock(&irmd.flows_lock); port_id = bmp_allocate(irmd.port_ids); if (!bmp_is_id_valid(irmd.port_ids, port_id)) { pthread_rwlock_unlock(&irmd.flows_lock); log_err("Could not allocate port_id."); return -EBADF; } f = irm_flow_create(api, ipcp->api, port_id, cube); if (f == NULL) { bmp_release(irmd.port_ids, port_id); pthread_rwlock_unlock(&irmd.flows_lock); log_err("Could not allocate port_id."); return -ENOMEM; } list_add(&f->next, &irmd.irm_flows); pthread_rwlock_unlock(&irmd.flows_lock); assert(irm_flow_get_state(f) == FLOW_ALLOC_PENDING); hash = malloc(IPCP_HASH_LEN(ipcp)); if (hash == NULL) /* sanitizer cleans this */ return -ENOMEM; str_hash(ipcp->dir_hash_algo, hash, dst); if (ipcp_flow_alloc(ipcp->api, port_id, api, hash, IPCP_HASH_LEN(ipcp), cube)) { /* sanitizer cleans this */ log_info("Flow_allocation failed."); free(hash); return -EAGAIN; } free(hash); state = irm_flow_wait_state(f, FLOW_ALLOCATED, timeo); if (state != FLOW_ALLOCATED) { if (state == -ETIMEDOUT) { log_dbg("Flow allocation timed out"); return -ETIMEDOUT; } log_info("Pending flow to %s torn down.", dst); return -EPIPE; } assert(irm_flow_get_state(f) == FLOW_ALLOCATED); *e = f; log_info("Flow on port_id %d allocated.", port_id); return 0; } static int flow_dealloc(pid_t api, int port_id) { pid_t n_1_api = -1; int ret = 0; struct irm_flow * f = NULL; pthread_rwlock_wrlock(&irmd.flows_lock); f = get_irm_flow(port_id); if (f == NULL) { pthread_rwlock_unlock(&irmd.flows_lock); log_dbg("Deallocate unknown port %d by %d.", port_id, api); return 0; } if (api == f->n_api) { f->n_api = -1; n_1_api = f->n_1_api; } else if (api == f->n_1_api) { f->n_1_api = -1; } else { pthread_rwlock_unlock(&irmd.flows_lock); log_dbg("Dealloc called by wrong AP-I."); return -EPERM; } if (irm_flow_get_state(f) == FLOW_DEALLOC_PENDING) { list_del(&f->next); if ((kill(f->n_api, 0) < 0 && f->n_1_api == -1) || (kill(f->n_1_api, 0) < 0 && f->n_api == -1)) irm_flow_set_state(f, FLOW_NULL); clear_irm_flow(f); irm_flow_destroy(f); bmp_release(irmd.port_ids, port_id); log_info("Completed deallocation of port_id %d by AP-I %d.", port_id, api); } else { irm_flow_set_state(f, FLOW_DEALLOC_PENDING); log_dbg("Partial deallocation of port_id %d by AP-I %d.", port_id, api); } pthread_rwlock_unlock(&irmd.flows_lock); if (n_1_api != -1) ret = ipcp_flow_dealloc(n_1_api, port_id); return ret; } static pid_t auto_execute(char ** argv) { pid_t api; struct stat s; if (stat(argv[0], &s) != 0) { log_warn("Application %s does not exist.", argv[0]); return -1; } if (!(s.st_mode & S_IXUSR)) { log_warn("Application %s is not executable.", argv[0]); return -1; } api = fork(); if (api == -1) { log_err("Failed to fork"); return api; } if (api != 0) { log_info("Instantiated %s as AP-I %d.", argv[0], api); return api; } execv(argv[0], argv); log_err("Failed to execute %s.", argv[0]); exit(EXIT_FAILURE); } static struct irm_flow * flow_req_arr(pid_t api, const uint8_t * hash, qoscube_t cube) { struct reg_entry * re = NULL; struct apn_entry * a = NULL; struct api_entry * e = NULL; struct irm_flow * f = NULL; struct pid_el * c_api; struct ipcp_entry * ipcp; pid_t h_api = -1; int port_id = -1; struct timespec wt = {IRMD_REQ_ARR_TIMEOUT / 1000, (IRMD_REQ_ARR_TIMEOUT % 1000) * MILLION}; log_dbg("Flow req arrived from IPCP %d for " HASH_FMT ".", api, HASH_VAL(hash)); pthread_rwlock_rdlock(&irmd.reg_lock); ipcp = get_ipcp_entry_by_api(api); if (ipcp == NULL) { log_err("IPCP died."); return NULL; } re = registry_get_entry_by_hash(&irmd.registry, ipcp->dir_hash_algo, hash, IPCP_HASH_LEN(ipcp)); if (re == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); log_err("Unknown hash: " HASH_FMT ".", HASH_VAL(hash)); return NULL; } log_info("Flow request arrived for %s.", re->name); pthread_rwlock_unlock(&irmd.reg_lock); /* Give the AP a bit of slop time to call accept */ if (reg_entry_leave_state(re, REG_NAME_IDLE, &wt) == -1) { log_err("No APs for " HASH_FMT ".", HASH_VAL(hash)); return NULL; } pthread_rwlock_wrlock(&irmd.reg_lock); switch (reg_entry_get_state(re)) { case REG_NAME_IDLE: pthread_rwlock_unlock(&irmd.reg_lock); log_err("No APs for " HASH_FMT ".", HASH_VAL(hash)); return NULL; case REG_NAME_AUTO_ACCEPT: c_api = malloc(sizeof(*c_api)); if (c_api == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); return NULL; } reg_entry_set_state(re, REG_NAME_AUTO_EXEC); a = apn_table_get_by_apn(&irmd.apn_table, reg_entry_get_apn(re)); if (a == NULL || (c_api->pid = auto_execute(a->argv)) < 0) { reg_entry_set_state(re, REG_NAME_AUTO_ACCEPT); pthread_rwlock_unlock(&irmd.reg_lock); log_err("Could not get start apn for reg_entry %s.", re->name); free(c_api); return NULL; } list_add(&c_api->next, &irmd.spawned_apis); pthread_rwlock_unlock(&irmd.reg_lock); if (reg_entry_leave_state(re, REG_NAME_AUTO_EXEC, NULL)) return NULL; pthread_rwlock_wrlock(&irmd.reg_lock); /* FALLTHRU */ case REG_NAME_FLOW_ACCEPT: h_api = reg_entry_get_api(re); if (h_api == -1) { pthread_rwlock_unlock(&irmd.reg_lock); log_err("Invalid api returned."); return NULL; } break; default: pthread_rwlock_unlock(&irmd.reg_lock); log_err("IRMd in wrong state."); return NULL; } pthread_rwlock_unlock(&irmd.reg_lock); pthread_rwlock_wrlock(&irmd.flows_lock); port_id = bmp_allocate(irmd.port_ids); if (!bmp_is_id_valid(irmd.port_ids, port_id)) { pthread_rwlock_unlock(&irmd.flows_lock); return NULL; } f = irm_flow_create(h_api, api, port_id, cube); if (f == NULL) { bmp_release(irmd.port_ids, port_id); pthread_rwlock_unlock(&irmd.flows_lock); log_err("Could not allocate port_id."); return NULL; } list_add(&f->next, &irmd.irm_flows); pthread_rwlock_unlock(&irmd.flows_lock); pthread_rwlock_rdlock(&irmd.reg_lock); reg_entry_set_state(re, REG_NAME_FLOW_ARRIVED); e = api_table_get(&irmd.api_table, h_api); if (e == NULL) { pthread_rwlock_unlock(&irmd.reg_lock); pthread_rwlock_wrlock(&irmd.flows_lock); clear_irm_flow(f); bmp_release(irmd.port_ids, f->port_id); list_del(&f->next); pthread_rwlock_unlock(&irmd.flows_lock); log_err("Could not get api table entry for %d.", h_api); irm_flow_destroy(f); return NULL; } api_entry_wake(e, re); pthread_rwlock_unlock(&irmd.reg_lock); reg_entry_leave_state(re, REG_NAME_FLOW_ARRIVED, NULL); return f; } static int flow_alloc_reply(int port_id, int response) { struct irm_flow * f; pthread_rwlock_rdlock(&irmd.flows_lock); f = get_irm_flow(port_id); if (f == NULL) { pthread_rwlock_unlock(&irmd.flows_lock); return -1; } if (!response) irm_flow_set_state(f, FLOW_ALLOCATED); else irm_flow_set_state(f, FLOW_NULL); pthread_rwlock_unlock(&irmd.flows_lock); return 0; } static void irm_fini(void) { struct list_head * p; struct list_head * h; if (irmd_get_state() != IRMD_NULL) log_warn("Unsafe destroy."); pthread_rwlock_wrlock(&irmd.flows_lock); if (irmd.port_ids != NULL) bmp_destroy(irmd.port_ids); pthread_rwlock_unlock(&irmd.flows_lock); close(irmd.sockfd); if (unlink(IRM_SOCK_PATH)) log_dbg("Failed to unlink %s.", IRM_SOCK_PATH); pthread_rwlock_wrlock(&irmd.reg_lock); /* Clear the lists. */ list_for_each_safe(p, h, &irmd.ipcps) { struct ipcp_entry * e = list_entry(p, struct ipcp_entry, next); list_del(&e->next); ipcp_entry_destroy(e); } list_for_each(p, &irmd.spawned_apis) { struct pid_el * e = list_entry(p, struct pid_el, next); if (kill(e->pid, SIGTERM)) log_dbg("Could not send kill signal to %d.", e->pid); } list_for_each_safe(p, h, &irmd.spawned_apis) { struct pid_el * e = list_entry(p, struct pid_el, next); int status; if (waitpid(e->pid, &status, 0) < 0) log_dbg("Error waiting for %d to exit.", e->pid); list_del(&e->next); registry_del_api(&irmd.registry, e->pid); free(e); } list_for_each_safe(p, h, &irmd.apn_table) { struct apn_entry * e = list_entry(p, struct apn_entry, next); list_del(&e->next); apn_entry_destroy(e); } registry_destroy(&irmd.registry); pthread_rwlock_unlock(&irmd.reg_lock); if (irmd.rdrb != NULL) shm_rdrbuff_destroy(irmd.rdrb); if (irmd.lf != NULL) lockfile_destroy(irmd.lf); pthread_rwlock_destroy(&irmd.reg_lock); pthread_rwlock_destroy(&irmd.state_lock); } void irmd_sig_handler(int sig, siginfo_t * info, void * c) { (void) info; (void) c; switch(sig) { case SIGINT: case SIGTERM: case SIGHUP: if (irmd_get_state() == IRMD_NULL) { log_info("Patience is bitter, but its fruit is sweet."); return; } log_info("IRMd shutting down..."); irmd_set_state(IRMD_NULL); tpm_stop(); break; case SIGPIPE: log_dbg("Ignored SIGPIPE."); default: return; } } void * shm_sanitize(void * o) { struct list_head * p = NULL; struct timespec ts = {SHM_SAN_HOLDOFF / 1000, (SHM_SAN_HOLDOFF % 1000) * MILLION}; ssize_t idx; (void) o; while (irmd_get_state() == IRMD_RUNNING) { if (shm_rdrbuff_wait_full(irmd.rdrb, &ts) == -ETIMEDOUT) continue; pthread_rwlock_wrlock(&irmd.flows_lock); list_for_each(p, &irmd.irm_flows) { struct irm_flow * f = list_entry(p, struct irm_flow, next); if (kill(f->n_api, 0) < 0) { while ((idx = shm_rbuff_read(f->n_rb)) >= 0) shm_rdrbuff_remove(irmd.rdrb, idx); continue; } if (kill(f->n_1_api, 0) < 0) { while ((idx = shm_rbuff_read(f->n_1_rb)) >= 0) shm_rdrbuff_remove(irmd.rdrb, idx); continue; } } pthread_rwlock_unlock(&irmd.flows_lock); } return (void *) 0; } void * irm_sanitize(void * o) { struct timespec now; struct list_head * p = NULL; struct list_head * h = NULL; struct timespec timeout = {IRMD_CLEANUP_TIMER / BILLION, IRMD_CLEANUP_TIMER % BILLION}; int s; (void) o; while (true) { if (clock_gettime(CLOCK_MONOTONIC, &now) < 0) log_warn("Failed to get time."); if (irmd_get_state() != IRMD_RUNNING) { /* Clean up all flows first to kill mainloops */ pthread_rwlock_wrlock(&irmd.flows_lock); list_for_each_safe(p, h, &irmd.irm_flows) { struct irm_flow * f = list_entry(p, struct irm_flow, next); list_del(&f->next); irm_flow_set_state(f, FLOW_NULL); clear_irm_flow(f); irm_flow_destroy(f); } pthread_rwlock_unlock(&irmd.flows_lock); pthread_rwlock_wrlock(&irmd.reg_lock); /* Clean up api entries as well */ list_for_each_safe(p, h, &irmd.api_table) { struct api_entry * e = list_entry(p, struct api_entry, next); list_del(&e->next); api_entry_destroy(e); } pthread_rwlock_unlock(&irmd.reg_lock); return (void *) 0; } pthread_rwlock_wrlock(&irmd.reg_lock); list_for_each_safe(p, h, &irmd.spawned_apis) { struct pid_el * e = list_entry(p, struct pid_el, next); waitpid(e->pid, &s, WNOHANG); if (kill(e->pid, 0) >= 0) continue; log_dbg("Child process %d died, error %d.", e->pid, s); list_del(&e->next); free(e); } list_for_each_safe(p, h, &irmd.api_table) { struct api_entry * e = list_entry(p, struct api_entry, next); if (kill(e->api, 0) >= 0) continue; log_dbg("Dead AP-I removed: %d.", e->api); list_del(&e->next); api_entry_destroy(e); } list_for_each_safe(p, h, &irmd.ipcps) { struct ipcp_entry * e = list_entry(p, struct ipcp_entry, next); if (kill(e->api, 0) >= 0) continue; log_dbg("Dead IPCP removed: %d.", e->api); list_del(&e->next); ipcp_entry_destroy(e); } list_for_each_safe(p, h, &irmd.registry) { struct list_head * p2; struct list_head * h2; struct reg_entry * e = list_entry(p, struct reg_entry, next); list_for_each_safe(p2, h2, &e->reg_apis) { struct pid_el * a = list_entry(p2, struct pid_el, next); if (kill(a->pid, 0) >= 0) continue; log_dbg("Dead AP-I removed from: %d %s.", a->pid, e->name); reg_entry_del_pid_el(e, a); } } pthread_rwlock_unlock(&irmd.reg_lock); pthread_rwlock_wrlock(&irmd.flows_lock); list_for_each_safe(p, h, &irmd.irm_flows) { int ipcpi; int port_id; struct irm_flow * f = list_entry(p, struct irm_flow, next); if (irm_flow_get_state(f) == FLOW_ALLOC_PENDING && ts_diff_ms(&f->t0, &now) > IRMD_FLOW_TIMEOUT) { log_dbg("Pending port_id %d timed out.", f->port_id); f->n_api = -1; irm_flow_set_state(f, FLOW_DEALLOC_PENDING); ipcpi = f->n_1_api; port_id = f->port_id; pthread_rwlock_unlock(&irmd.flows_lock); ipcp_flow_dealloc(ipcpi, port_id); pthread_rwlock_wrlock(&irmd.flows_lock); continue; } if (kill(f->n_api, 0) < 0) { struct shm_flow_set * set; log_dbg("AP-I %d gone, deallocating flow %d.", f->n_api, f->port_id); set = shm_flow_set_open(f->n_api); if (set != NULL) shm_flow_set_destroy(set); f->n_api = -1; irm_flow_set_state(f, FLOW_DEALLOC_PENDING); ipcpi = f->n_1_api; port_id = f->port_id; pthread_rwlock_unlock(&irmd.flows_lock); ipcp_flow_dealloc(ipcpi, port_id); pthread_rwlock_wrlock(&irmd.flows_lock); continue; } if (kill(f->n_1_api, 0) < 0) { struct shm_flow_set * set; log_err("IPCP %d gone, flow %d removed.", f->n_1_api, f->port_id); set = shm_flow_set_open(f->n_api); if (set != NULL) shm_flow_set_destroy(set); f->n_1_api = -1; irm_flow_set_state(f, FLOW_DEALLOC_PENDING); } } pthread_rwlock_unlock(&irmd.flows_lock); nanosleep(&timeout, NULL); } } void * mainloop(void * o) { uint8_t buf[IRM_MSG_BUF_SIZE]; (void) o; while (true) { #ifdef __FreeBSD__ fd_set fds; struct timeval timeout = {(IRMD_ACCEPT_TIMEOUT / 1000), (IRMD_ACCEPT_TIMEOUT % 1000) * 1000}; #endif int cli_sockfd; irm_msg_t * msg; ssize_t count; buffer_t buffer; irm_msg_t ret_msg = IRM_MSG__INIT; struct irm_flow * e = NULL; pid_t * apis = NULL; struct timespec * timeo = NULL; struct timespec ts = {0, 0}; struct timeval tv = {(SOCKET_TIMEOUT / 1000), (SOCKET_TIMEOUT % 1000) * 1000}; if (irmd_get_state() != IRMD_RUNNING || tpm_check()) { tpm_exit(); break; } ret_msg.code = IRM_MSG_CODE__IRM_REPLY; #ifdef __FreeBSD__ FD_ZERO(&fds); FD_SET(irmd.sockfd, &fds); if (select(irmd.sockfd + 1, &fds, NULL, NULL, &timeout) <= 0) continue; #endif cli_sockfd = accept(irmd.sockfd, 0, 0); if (cli_sockfd < 0) continue; if (setsockopt(cli_sockfd, SOL_SOCKET, SO_RCVTIMEO, (void *) &tv, sizeof(tv))) log_warn("Failed to set timeout on socket."); count = read(cli_sockfd, buf, IRM_MSG_BUF_SIZE); if (count <= 0) { log_err("Failed to read from socket."); close(cli_sockfd); continue; } if (irmd_get_state() != IRMD_RUNNING) { close(cli_sockfd); tpm_exit(); break; } msg = irm_msg__unpack(NULL, count, buf); if (msg == NULL) { close(cli_sockfd); continue; } tpm_dec(); if (msg->has_timeo_sec) { assert(msg->has_timeo_nsec); ts.tv_sec = msg->timeo_sec; ts.tv_nsec = msg->timeo_nsec; timeo = &ts; } switch (msg->code) { case IRM_MSG_CODE__IRM_CREATE_IPCP: ret_msg.has_result = true; ret_msg.result = create_ipcp(msg->dst_name, msg->ipcp_type); break; case IRM_MSG_CODE__IPCP_CREATE_R: ret_msg.has_result = true; ret_msg.result = create_ipcp_r(msg->api, msg->result); break; case IRM_MSG_CODE__IRM_DESTROY_IPCP: ret_msg.has_result = true; ret_msg.result = destroy_ipcp(msg->api); break; case IRM_MSG_CODE__IRM_BOOTSTRAP_IPCP: ret_msg.has_result = true; ret_msg.result = bootstrap_ipcp(msg->api, msg->conf); break; case IRM_MSG_CODE__IRM_ENROLL_IPCP: ret_msg.has_result = true; ret_msg.result = enroll_ipcp(msg->api, msg->dif_name[0]); break; case IRM_MSG_CODE__IRM_BIND_AP: ret_msg.has_result = true; ret_msg.result = bind_ap(msg->ap_name, msg->dst_name, msg->opts, msg->n_args, msg->args); break; case IRM_MSG_CODE__IRM_UNBIND_AP: ret_msg.has_result = true; ret_msg.result = unbind_ap(msg->ap_name, msg->dst_name); break; case IRM_MSG_CODE__IRM_API_ANNOUNCE: ret_msg.has_result = true; ret_msg.result = api_announce(msg->api, msg->ap_name); break; case IRM_MSG_CODE__IRM_BIND_API: ret_msg.has_result = true; ret_msg.result = bind_api(msg->api, msg->dst_name); break; case IRM_MSG_CODE__IRM_UNBIND_API: ret_msg.has_result = true; ret_msg.result = unbind_api(msg->api, msg->dst_name); break; case IRM_MSG_CODE__IRM_LIST_IPCPS: ret_msg.has_result = true; ret_msg.n_apis = list_ipcps(msg->dst_name, &apis); ret_msg.apis = apis; break; case IRM_MSG_CODE__IRM_REG: ret_msg.has_result = true; ret_msg.result = name_reg(msg->dst_name, msg->dif_name, msg->n_dif_name); break; case IRM_MSG_CODE__IRM_UNREG: ret_msg.has_result = true; ret_msg.result = name_unreg(msg->dst_name, msg->dif_name, msg->n_dif_name); break; case IRM_MSG_CODE__IRM_FLOW_ACCEPT: ret_msg.has_result = true; ret_msg.result = flow_accept(msg->api, timeo, &e); if (ret_msg.result == 0) { ret_msg.has_port_id = true; ret_msg.port_id = e->port_id; ret_msg.has_api = true; ret_msg.api = e->n_1_api; ret_msg.has_qoscube = true; ret_msg.qoscube = e->qc; } break; case IRM_MSG_CODE__IRM_FLOW_ALLOC: ret_msg.has_result = true; ret_msg.result = flow_alloc(msg->api, msg->dst_name, msg->qoscube, timeo, &e); if (ret_msg.result == 0) { ret_msg.has_port_id = true; ret_msg.port_id = e->port_id; ret_msg.has_api = true; ret_msg.api = e->n_1_api; } break; case IRM_MSG_CODE__IRM_FLOW_DEALLOC: ret_msg.has_result = true; ret_msg.result = flow_dealloc(msg->api, msg->port_id); break; case IRM_MSG_CODE__IPCP_FLOW_REQ_ARR: e = flow_req_arr(msg->api, msg->hash.data, msg->qoscube); ret_msg.has_result = true; if (e == NULL) { ret_msg.result = -1; break; } ret_msg.has_port_id = true; ret_msg.port_id = e->port_id; ret_msg.has_api = true; ret_msg.api = e->n_api; break; case IRM_MSG_CODE__IPCP_FLOW_ALLOC_REPLY: ret_msg.has_result = true; ret_msg.result = flow_alloc_reply(msg->port_id, msg->response); break; default: log_err("Don't know that message code."); break; } irm_msg__free_unpacked(msg, NULL); if (ret_msg.result == -EPIPE || !ret_msg.has_result) { close(cli_sockfd); tpm_inc(); continue; } buffer.len = irm_msg__get_packed_size(&ret_msg); if (buffer.len == 0) { log_err("Failed to calculate length of reply message."); if (apis != NULL) free(apis); close(cli_sockfd); tpm_inc(); continue; } buffer.data = malloc(buffer.len); if (buffer.data == NULL) { if (apis != NULL) free(apis); close(cli_sockfd); tpm_inc(); continue; } irm_msg__pack(&ret_msg, buffer.data); if (apis != NULL) free(apis); if (write(cli_sockfd, buffer.data, buffer.len) == -1) log_warn("Failed to send reply message."); free(buffer.data); close(cli_sockfd); tpm_inc(); } return (void *) 0; } static int irm_init(void) { struct stat st; struct timeval timeout = {(IRMD_ACCEPT_TIMEOUT / 1000), (IRMD_ACCEPT_TIMEOUT % 1000) * 1000}; memset(&st, 0, sizeof(st)); irmd.state = IRMD_NULL; if (pthread_rwlock_init(&irmd.state_lock, NULL)) { log_err("Failed to initialize rwlock."); goto fail_state_lock; } if (pthread_rwlock_init(&irmd.reg_lock, NULL)) { log_err("Failed to initialize rwlock."); goto fail_reg_lock; } if (pthread_rwlock_init(&irmd.flows_lock, NULL)) { log_err("Failed to initialize rwlock."); goto fail_flows_lock; } list_head_init(&irmd.ipcps); list_head_init(&irmd.api_table); list_head_init(&irmd.apn_table); list_head_init(&irmd.spawned_apis); list_head_init(&irmd.registry); list_head_init(&irmd.irm_flows); irmd.port_ids = bmp_create(IRMD_MAX_FLOWS, 0); if (irmd.port_ids == NULL) { log_err("Failed to create port_ids bitmap."); goto fail_port_ids; } if ((irmd.lf = lockfile_create()) == NULL) { if ((irmd.lf = lockfile_open()) == NULL) { log_err("Lockfile error."); goto fail_lockfile; } if (kill(lockfile_owner(irmd.lf), 0) < 0) { log_info("IRMd didn't properly shut down last time."); shm_rdrbuff_destroy(shm_rdrbuff_open()); log_info("Stale resources cleaned."); lockfile_destroy(irmd.lf); irmd.lf = lockfile_create(); } else { log_info("IRMd already running (%d), exiting.", lockfile_owner(irmd.lf)); lockfile_close(irmd.lf); goto fail_lockfile; } } if (stat(SOCK_PATH, &st) == -1) { if (mkdir(SOCK_PATH, 0777)) { log_err("Failed to create sockets directory."); goto fail_stat; } } irmd.sockfd = server_socket_open(IRM_SOCK_PATH); if (irmd.sockfd < 0) { log_err("Failed to open server socket."); goto fail_sock_path; } if (setsockopt(irmd.sockfd, SOL_SOCKET, SO_RCVTIMEO, (char *) &timeout, sizeof(timeout)) < 0) { log_err("Failed setting socket option."); goto fail_sock_opt; } if (chmod(IRM_SOCK_PATH, 0666)) { log_err("Failed to chmod socket."); goto fail_sock_opt; } if (irmd.lf == NULL) { log_err("Failed to create lockfile."); goto fail_sock_opt; } if ((irmd.rdrb = shm_rdrbuff_create()) == NULL) { log_err("Failed to create rdrbuff."); goto fail_rdrbuff; } irmd.state = IRMD_RUNNING; log_info("Ouroboros IPC Resource Manager daemon started..."); return 0; fail_rdrbuff: shm_rdrbuff_destroy(irmd.rdrb); fail_sock_opt: close(irmd.sockfd); fail_sock_path: unlink(IRM_SOCK_PATH); fail_stat: lockfile_destroy(irmd.lf); fail_lockfile: bmp_destroy(irmd.port_ids); fail_port_ids: pthread_rwlock_destroy(&irmd.flows_lock); fail_flows_lock: pthread_rwlock_destroy(&irmd.reg_lock); fail_reg_lock: pthread_rwlock_destroy(&irmd.state_lock); fail_state_lock: return -1; } static void usage(void) { log_err("Usage: irmd \n\n" " [--stdout (Print to stdout instead of logs)]\n"); } int main(int argc, char ** argv) { struct sigaction sig_act; sigset_t sigset; bool use_stdout = false; sigemptyset(&sigset); sigaddset(&sigset, SIGINT); sigaddset(&sigset, SIGQUIT); sigaddset(&sigset, SIGHUP); sigaddset(&sigset, SIGPIPE); if (geteuid() != 0) { log_err("IPC Resource Manager must be run as root."); exit(EXIT_FAILURE); } argc--; argv++; while (argc > 0) { if (strcmp(*argv, "--stdout") == 0) { use_stdout = true; argc--; argv++; } else { usage(); exit(EXIT_FAILURE); } } /* Init sig_act. */ memset(&sig_act, 0, sizeof sig_act); /* Install signal traps. */ sig_act.sa_sigaction = &irmd_sig_handler; sig_act.sa_flags = SA_SIGINFO; if (sigaction(SIGINT, &sig_act, NULL) < 0) exit(EXIT_FAILURE); if (sigaction(SIGTERM, &sig_act, NULL) < 0) exit(EXIT_FAILURE); if (sigaction(SIGHUP, &sig_act, NULL) < 0) exit(EXIT_FAILURE); if (sigaction(SIGPIPE, &sig_act, NULL) < 0) exit(EXIT_FAILURE); log_init(!use_stdout); if (irm_init() < 0) { log_fini(); exit(EXIT_FAILURE); } if (tpm_init(IRMD_MIN_THREADS, IRMD_ADD_THREADS, mainloop)) { log_fini(); exit(EXIT_FAILURE); } if (tpm_start()) { tpm_fini(); log_fini(); exit(EXIT_FAILURE); } pthread_create(&irmd.irm_sanitize, NULL, irm_sanitize, NULL); pthread_create(&irmd.shm_sanitize, NULL, shm_sanitize, irmd.rdrb); /* tpm_stop() called from sighandler */ tpm_fini(); pthread_join(irmd.irm_sanitize, NULL); pthread_join(irmd.shm_sanitize, NULL); pthread_sigmask(SIG_BLOCK, &sigset, NULL); irm_fini(); pthread_sigmask(SIG_UNBLOCK, &sigset, NULL); log_fini(); log_info("Bye."); exit(EXIT_SUCCESS); }