/* * Ouroboros - Copyright (C) 2016 - 2019 * * IPC process over UDP * * Dimitri Staessens * Sander Vrijders * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., http://www.fsf.org/about/contact/. */ #if defined(__linux__) || defined(__CYGWIN__) #define _DEFAULT_SOURCE #else #define _POSIX_C_SOURCE 200112L #endif #include "config.h" #define OUROBOROS_PREFIX "ipcpd/udp" #include #include #include #include #include #include #include #include #include "ipcp.h" #include "shim-data.h" #include #include #include #include #include #include #include #include #include #include #include #define FLOW_REQ 1 #define FLOW_REPLY 2 #define THIS_TYPE IPCP_UDP #define LISTEN_PORT htons(0x0D1F) #define SHIM_UDP_BUF_SIZE 256 #define SHIM_UDP_MSG_SIZE 256 #define SHIM_UDP_MAX_PACKET_SIZE 8980 #define DNS_TTL 86400 #define FD_UPDATE_TIMEOUT 100 /* microseconds */ #define local_ip (udp_data.s_saddr.sin_addr.s_addr) #define UDP_MAX_PORTS 0xFFFF struct mgmt_msg { uint16_t src_udp_port; uint16_t dst_udp_port; uint8_t code; uint8_t response; /* QoS parameters from spec, aligned */ uint8_t availability; uint8_t in_order; uint32_t delay; uint64_t bandwidth; uint32_t loss; uint32_t ber; uint32_t max_gap; } __attribute__((packed)); struct uf { int udp; int skfd; }; struct { struct shim_data * shim_data; uint32_t ip_addr; uint32_t dns_addr; /* listen server */ struct sockaddr_in s_saddr; int s_fd; fset_t * np1_flows; fqueue_t * fq; fd_set flow_fd_s; /* bidir mappings of (n - 1) file descriptor to (n) flow descriptor */ int uf_to_fd[FD_SETSIZE]; struct uf fd_to_uf[SYS_MAX_FLOWS]; pthread_rwlock_t flows_lock; pthread_t packet_loop; pthread_t handler; pthread_t packet_reader; bool fd_set_mod; pthread_cond_t fd_set_cond; pthread_mutex_t fd_set_lock; } udp_data; static int udp_data_init(void) { int i; if (pthread_rwlock_init(&udp_data.flows_lock, NULL)) return -1; if (pthread_cond_init(&udp_data.fd_set_cond, NULL)) goto fail_set_cond; if (pthread_mutex_init(&udp_data.fd_set_lock, NULL)) goto fail_set_lock; for (i = 0; i < FD_SETSIZE; ++i) udp_data.uf_to_fd[i] = -1; for (i = 0; i < SYS_MAX_FLOWS; ++i) { udp_data.fd_to_uf[i].skfd = -1; udp_data.fd_to_uf[i].udp = -1; } FD_ZERO(&udp_data.flow_fd_s); udp_data.np1_flows = fset_create(); if (udp_data.np1_flows == NULL) goto fail_fset; udp_data.fq = fqueue_create(); if (udp_data.fq == NULL) goto fail_fqueue; udp_data.shim_data = shim_data_create(); if (udp_data.shim_data == NULL) goto fail_data; return 0; fail_data: fqueue_destroy(udp_data.fq); fail_fqueue: fset_destroy(udp_data.np1_flows); fail_fset: pthread_mutex_destroy(&udp_data.fd_set_lock); fail_set_lock: pthread_cond_destroy(&udp_data.fd_set_cond); fail_set_cond: pthread_rwlock_destroy(&udp_data.flows_lock); return -1; } static void udp_data_fini(void) { fset_destroy(udp_data.np1_flows); fqueue_destroy(udp_data.fq); shim_data_destroy(udp_data.shim_data); pthread_rwlock_destroy(&udp_data.flows_lock); pthread_mutex_destroy(&udp_data.fd_set_lock); pthread_cond_destroy(&udp_data.fd_set_cond); } static void set_fd(int fd) { pthread_mutex_lock(&udp_data.fd_set_lock); udp_data.fd_set_mod = true; FD_SET(fd, &udp_data.flow_fd_s); while (udp_data.fd_set_mod) pthread_cond_wait(&udp_data.fd_set_cond, &udp_data.fd_set_lock); pthread_mutex_unlock(&udp_data.fd_set_lock); } static void clr_fd(int fd) { pthread_mutex_lock(&udp_data.fd_set_lock); udp_data.fd_set_mod = true; FD_CLR(fd, &udp_data.flow_fd_s); while (udp_data.fd_set_mod) pthread_cond_wait(&udp_data.fd_set_cond, &udp_data.fd_set_lock); pthread_mutex_unlock(&udp_data.fd_set_lock); } static int send_shim_udp_msg(uint8_t * buf, size_t len, uint32_t dst_ip_addr) { struct sockaddr_in r_saddr; memset((char *)&r_saddr, 0, sizeof(r_saddr)); r_saddr.sin_family = AF_INET; r_saddr.sin_addr.s_addr = dst_ip_addr; r_saddr.sin_port = LISTEN_PORT; if (sendto(udp_data.s_fd, buf, len, 0, (struct sockaddr *) &r_saddr, sizeof(r_saddr)) == -1) { log_err("Failed to send message."); return -1; } return 0; } static int ipcp_udp_port_alloc(uint32_t dst_ip_addr, uint16_t src_udp_port, const uint8_t * dst, qosspec_t qs) { uint8_t * buf; struct mgmt_msg * msg; size_t len; int ret; len = sizeof(*msg) + ipcp_dir_hash_len(); buf = malloc(len); if (buf == NULL) return -1; msg = (struct mgmt_msg *) buf; msg->code = FLOW_REQ; msg->src_udp_port = src_udp_port; msg->delay = hton32(qs.delay); msg->bandwidth = hton64(qs.bandwidth); msg->availability = qs.availability; msg->loss = hton32(qs.loss); msg->ber = hton32(qs.ber); msg->in_order = qs.in_order; msg->max_gap = hton32(qs.max_gap); memcpy(msg + 1, dst, ipcp_dir_hash_len()); ret = send_shim_udp_msg(buf, len, dst_ip_addr); free(buf); return ret; } static int ipcp_udp_port_alloc_resp(uint32_t dst_ip_addr, uint16_t src_udp_port, uint16_t dst_udp_port, int response) { struct mgmt_msg * msg; int ret; msg = malloc(sizeof(*msg)); if (msg == NULL) return -1; msg->code = FLOW_REPLY; msg->src_udp_port = src_udp_port; msg->dst_udp_port = dst_udp_port; msg->response = response; ret = send_shim_udp_msg((uint8_t *) msg, sizeof(*msg), dst_ip_addr); free(msg); return ret; } static int ipcp_udp_port_req(struct sockaddr_in * c_saddr, const uint8_t * dst, qosspec_t qs) { struct timespec ts = {0, FD_UPDATE_TIMEOUT * 1000}; struct timespec abstime; struct sockaddr_in f_saddr; socklen_t f_saddr_len = sizeof(f_saddr); int skfd; int fd; log_dbg("Port request arrived from UDP port %d", ntohs(c_saddr->sin_port)); if ((skfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) < 0) { log_err("Could not create UDP socket."); return -1; } memset((char *) &f_saddr, 0, sizeof(f_saddr)); f_saddr.sin_family = AF_INET; f_saddr.sin_addr.s_addr = local_ip; f_saddr.sin_port = 0; if (bind(skfd, (struct sockaddr *) &f_saddr, sizeof(f_saddr)) < 0) { log_err("Could not bind to socket."); close(skfd); return -1; } if (getsockname(skfd, (struct sockaddr *) &f_saddr, &f_saddr_len) < 0) { log_err("Could not get address from fd."); return -1; } /* connect stores the remote address in the file descriptor */ if (connect(skfd, (struct sockaddr *) c_saddr, sizeof(*c_saddr)) < 0) { log_err("Could not connect to remote UDP client."); close(skfd); return -1; } clock_gettime(PTHREAD_COND_CLOCK, &abstime); pthread_mutex_lock(&ipcpi.alloc_lock); while (ipcpi.alloc_id != -1 && ipcp_get_state() == IPCP_OPERATIONAL) { ts_add(&abstime, &ts, &abstime); pthread_cond_timedwait(&ipcpi.alloc_cond, &ipcpi.alloc_lock, &abstime); } if (ipcp_get_state() != IPCP_OPERATIONAL) { log_dbg("Won't allocate over non-operational IPCP."); pthread_mutex_unlock(&ipcpi.alloc_lock); close(skfd); return -1; } /* reply to IRM */ fd = ipcp_flow_req_arr(dst, ipcp_dir_hash_len(), qs); if (fd < 0) { pthread_mutex_unlock(&ipcpi.alloc_lock); log_err("Could not get new flow from IRMd."); close(skfd); return -1; } pthread_rwlock_wrlock(&udp_data.flows_lock); udp_data.uf_to_fd[skfd] = fd; udp_data.fd_to_uf[fd].skfd = skfd; udp_data.fd_to_uf[fd].udp = f_saddr.sin_port; pthread_rwlock_unlock(&udp_data.flows_lock); ipcpi.alloc_id = fd; pthread_cond_broadcast(&ipcpi.alloc_cond); pthread_mutex_unlock(&ipcpi.alloc_lock); log_dbg("Pending allocation request, fd %d, UDP port (%d, %d).", fd, ntohs(f_saddr.sin_port), ntohs(c_saddr->sin_port)); return 0; } /* returns the n flow descriptor */ static int udp_port_to_fd(int udp_port) { int i; for (i = 0; i < SYS_MAX_FLOWS; ++i) if (udp_data.fd_to_uf[i].udp == udp_port) return i; return -1; } static int ipcp_udp_port_alloc_reply(uint16_t src_udp_port, uint16_t dst_udp_port, int response) { int fd = -1; int ret = 0; int skfd = -1; struct sockaddr_in t_saddr; socklen_t t_saddr_len = sizeof(t_saddr); log_dbg("Received reply for flow on udp port %d.", ntohs(dst_udp_port)); pthread_rwlock_rdlock(&udp_data.flows_lock); fd = udp_port_to_fd(dst_udp_port); if (fd < 0) { pthread_rwlock_unlock(&udp_data.flows_lock); return -1; } skfd = udp_data.fd_to_uf[fd].skfd; pthread_rwlock_unlock(&udp_data.flows_lock); /* get the original address with the LISTEN PORT */ if (getpeername(skfd, (struct sockaddr *) &t_saddr, &t_saddr_len) < 0) { log_dbg("Flow with fd %d has no peer.", fd); return -1; } /* connect to the flow udp port */ t_saddr.sin_port = src_udp_port; if (connect(skfd, (struct sockaddr *) &t_saddr, sizeof(t_saddr)) < 0) { close(skfd); return -1; } pthread_rwlock_rdlock(&udp_data.flows_lock); set_fd(skfd); pthread_rwlock_unlock(&udp_data.flows_lock); if (ipcp_flow_alloc_reply(fd, response) < 0) return -1; log_dbg("Flow allocation completed, UDP ports: (%d, %d).", ntohs(dst_udp_port), ntohs(src_udp_port)); return ret; } static void * ipcp_udp_listener(void * o) { uint8_t buf[SHIM_UDP_MSG_SIZE]; ssize_t n = 0; struct sockaddr_in c_saddr; int sfd = udp_data.s_fd; (void) o; while (true) { struct mgmt_msg * msg = NULL; qosspec_t qs; memset(&buf, 0, SHIM_UDP_MSG_SIZE); n = recvfrom(sfd, buf, SHIM_UDP_MSG_SIZE, 0, (struct sockaddr *) &c_saddr, (socklen_t *) sizeof(c_saddr)); if (n < 0) continue; /* flow alloc request from other host */ if (gethostbyaddr((const char *) &c_saddr.sin_addr.s_addr, sizeof(c_saddr.sin_addr.s_addr), AF_INET) == NULL) continue; msg = (struct mgmt_msg *) buf; switch (msg->code) { case FLOW_REQ: c_saddr.sin_port = msg->src_udp_port; qs.delay = ntoh32(msg->delay); qs.bandwidth = ntoh64(msg->bandwidth); qs.availability = msg->availability; qs.loss = ntoh32(msg->loss); qs.ber = ntoh32(msg->ber); qs.in_order = msg->in_order; qs.max_gap = ntoh32(msg->max_gap); ipcp_udp_port_req(&c_saddr, (uint8_t *) (msg + 1), qs); break; case FLOW_REPLY: ipcp_udp_port_alloc_reply(msg->src_udp_port, msg->dst_udp_port, msg->response); break; default: log_err("Unknown message received %d.", msg->code); continue; } c_saddr.sin_port = LISTEN_PORT; } return 0; } static void * ipcp_udp_packet_reader(void * o) { ssize_t n; int skfd; int fd; /* FIXME: avoid this copy */ char buf[SHIM_UDP_MAX_PACKET_SIZE]; struct sockaddr_in r_saddr; struct timeval tv = {0, FD_UPDATE_TIMEOUT}; fd_set read_fds; int flags; (void) o; ipcp_lock_to_core(); while (true) { pthread_rwlock_rdlock(&udp_data.flows_lock); pthread_mutex_lock(&udp_data.fd_set_lock); read_fds = udp_data.flow_fd_s; udp_data.fd_set_mod = false; pthread_cond_broadcast(&udp_data.fd_set_cond); pthread_mutex_unlock(&udp_data.fd_set_lock); pthread_rwlock_unlock(&udp_data.flows_lock); if (select(FD_SETSIZE, &read_fds, NULL, NULL, &tv) <= 0) continue; for (skfd = 0; skfd < FD_SETSIZE; ++skfd) { if (!FD_ISSET(skfd, &read_fds)) continue; flags = fcntl(skfd, F_GETFL, 0); fcntl(skfd, F_SETFL, flags | O_NONBLOCK); n = sizeof(r_saddr); if ((n = recvfrom(skfd, &buf, SHIM_UDP_MAX_PACKET_SIZE, 0, (struct sockaddr *) &r_saddr, (unsigned *) &n)) <= 0) continue; pthread_rwlock_rdlock(&udp_data.flows_lock); fd = udp_data.uf_to_fd[skfd]; pthread_rwlock_unlock(&udp_data.flows_lock); flow_write(fd, buf, n); } } return (void *) 0; } static void * ipcp_udp_packet_loop(void * o) { int fd; struct shm_du_buff * sdb; (void) o; ipcp_lock_to_core(); while (true) { fevent(udp_data.np1_flows, udp_data.fq, NULL); while ((fd = fqueue_next(udp_data.fq)) >= 0) { if (ipcp_flow_read(fd, &sdb)) { log_err("Bad read from fd %d.", fd); continue; } pthread_rwlock_rdlock(&udp_data.flows_lock); fd = udp_data.fd_to_uf[fd].skfd; pthread_rwlock_unlock(&udp_data.flows_lock); pthread_cleanup_push((void (*)(void *)) ipcp_sdb_release, (void *) sdb); if (send(fd, shm_du_buff_head(sdb), shm_du_buff_tail(sdb) - shm_du_buff_head(sdb), 0) < 0) log_err("Failed to send PACKET."); pthread_cleanup_pop(true); } } return (void *) 1; } static int ipcp_udp_bootstrap(const struct ipcp_config * conf) { struct sockaddr_in s_saddr; char ipstr[INET_ADDRSTRLEN]; char dnsstr[INET_ADDRSTRLEN]; int enable = 1; int fd = -1; assert(conf); assert(conf->type == THIS_TYPE); if (inet_ntop(AF_INET, &conf->ip_addr, ipstr, INET_ADDRSTRLEN) == NULL) { log_err("Failed to convert IP address"); return -1; } if (conf->dns_addr != 0) { if (inet_ntop(AF_INET, &conf->dns_addr, dnsstr, INET_ADDRSTRLEN) == NULL) { log_err("Failed to convert DNS address"); return -1; } #ifndef HAVE_DDNS log_warn("DNS disabled at compile time, address ignored"); #endif } else { strcpy(dnsstr, "not set"); } /* UDP listen server */ if ((fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1) { log_err("Can't create socket."); goto fail_socket; } if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(int)) < 0) log_warn("Failed to set SO_REUSEADDR."); memset((char *) &s_saddr, 0, sizeof(s_saddr)); udp_data.s_saddr.sin_family = AF_INET; udp_data.s_saddr.sin_addr.s_addr = conf->ip_addr; udp_data.s_saddr.sin_port = LISTEN_PORT; if (bind(fd, (struct sockaddr *) &udp_data.s_saddr, sizeof(udp_data.s_saddr)) < 0) { log_err("Couldn't bind to %s.", ipstr); goto fail_bind; } udp_data.s_fd = fd; udp_data.ip_addr = conf->ip_addr; udp_data.dns_addr = conf->dns_addr; FD_CLR(udp_data.s_fd, &udp_data.flow_fd_s); ipcp_set_state(IPCP_OPERATIONAL); if (pthread_create(&udp_data.handler, NULL, ipcp_udp_listener, NULL)) { ipcp_set_state(IPCP_INIT); goto fail_bind; } if (pthread_create(&udp_data.packet_reader, NULL, ipcp_udp_packet_reader, NULL)) { ipcp_set_state(IPCP_INIT); goto fail_packet_reader; } if (pthread_create(&udp_data.packet_loop, NULL, ipcp_udp_packet_loop, NULL)) { ipcp_set_state(IPCP_INIT); goto fail_packet_loop; } log_dbg("Bootstrapped IPCP over UDP with pid %d.", getpid()); log_dbg("Bound to IP address %s.", ipstr); log_dbg("DNS server address is %s.", dnsstr); return 0; fail_packet_loop: pthread_cancel(udp_data.packet_reader); pthread_join(udp_data.packet_reader, NULL); fail_packet_reader: pthread_cancel(udp_data.handler); pthread_join(udp_data.handler, NULL); fail_bind: close(fd); fail_socket: return -1; } #ifdef HAVE_DDNS /* FIXME: Dependency on nsupdate to be removed in the end */ /* NOTE: Disgusted with this crap */ static int ddns_send(char * cmd) { pid_t pid = -1; int wstatus; int pipe_fd[2]; char * argv[] = {NSUPDATE_EXEC, 0}; char * envp[] = {0}; if (pipe(pipe_fd)) { log_err("Failed to create pipe."); return -1; } pid = fork(); if (pid == -1) { log_err("Failed to fork."); return -1; } if (pid == 0) { close(pipe_fd[1]); dup2(pipe_fd[0], 0); execve(argv[0], &argv[0], envp); } close(pipe_fd[0]); if (write(pipe_fd[1], cmd, strlen(cmd)) == -1) { log_err("Failed to communicate with nsupdate."); close(pipe_fd[1]); return -1; } waitpid(pid, &wstatus, 0); if (WIFEXITED(wstatus) && WEXITSTATUS(wstatus) == 0) log_dbg("Succesfully communicated with DNS server."); else log_err("Failed to register with DNS server."); close(pipe_fd[1]); return 0; } static uint32_t ddns_resolve(char * name, uint32_t dns_addr) { pid_t pid = -1; int wstatus; int pipe_fd[2]; char dnsstr[INET_ADDRSTRLEN]; char buf[SHIM_UDP_BUF_SIZE]; ssize_t count = 0; char * substr = NULL; char * substr2 = NULL; char * addr_str = "Address:"; uint32_t ip_addr = 0; if (inet_ntop(AF_INET, &dns_addr, dnsstr, INET_ADDRSTRLEN) == NULL) return 0; if (pipe(pipe_fd)) { log_err("Failed to create pipe."); return 0; } pid = fork(); if (pid == -1) { log_err("Failed to fork."); return 0; } if (pid == 0) { char * argv[] = {NSLOOKUP_EXEC, name, dnsstr, 0}; char * envp[] = {0}; close(pipe_fd[0]); dup2(pipe_fd[1], 1); execve(argv[0], &argv[0], envp); } close(pipe_fd[1]); count = read(pipe_fd[0], buf, SHIM_UDP_BUF_SIZE); if (count <= 0) { log_err("Failed to communicate with nslookup."); close(pipe_fd[0]); return 0; } close(pipe_fd[0]); waitpid(pid, &wstatus, 0); if (WIFEXITED(wstatus) && WEXITSTATUS(wstatus) == 0 && count != SHIM_UDP_BUF_SIZE) log_dbg("Succesfully communicated with nslookup."); else log_err("Failed to resolve DNS address."); buf[count] = '\0'; substr = strtok(buf, "\n"); while (substr != NULL) { substr2 = substr; substr = strtok(NULL, "\n"); } if (substr2 == NULL || strstr(substr2, addr_str) == NULL) { log_err("Failed to resolve DNS address."); return 0; } if (inet_pton(AF_INET, substr2 + strlen(addr_str) + 1, &ip_addr) != 1) { log_err("Failed to resolve DNS address."); return 0; } return ip_addr; } #endif static int ipcp_udp_reg(const uint8_t * hash) { #ifdef HAVE_DDNS char ipstr[INET_ADDRSTRLEN]; char dnsstr[INET_ADDRSTRLEN]; char cmd[1000]; uint32_t dns_addr; uint32_t ip_addr; #endif char * hashstr; hashstr = malloc(ipcp_dir_hash_strlen() + 1); if (hashstr == NULL) return -1; assert(hash); ipcp_hash_str(hashstr, hash); if (shim_data_reg_add_entry(udp_data.shim_data, hash)) { log_err("Failed to add " HASH_FMT " to local registry.", HASH_VAL(hash)); free(hashstr); return -1; } #ifdef HAVE_DDNS /* register application with DNS server */ dns_addr = udp_data.dns_addr; if (dns_addr != 0) { ip_addr = udp_data.ip_addr; if (inet_ntop(AF_INET, &ip_addr, ipstr, INET_ADDRSTRLEN) == NULL) { free(hashstr); return -1; } if (inet_ntop(AF_INET, &dns_addr, dnsstr, INET_ADDRSTRLEN) == NULL) { free(hashstr); return -1; } sprintf(cmd, "server %s\nupdate add %s %d A %s\nsend\nquit\n", dnsstr, hashstr, DNS_TTL, ipstr); if (ddns_send(cmd)) { shim_data_reg_del_entry(udp_data.shim_data, hash); free(hashstr); return -1; } } #endif log_dbg("Registered " HASH_FMT ".", HASH_VAL(hash)); free(hashstr); return 0; } static int ipcp_udp_unreg(const uint8_t * hash) { #ifdef HAVE_DDNS char dnsstr[INET_ADDRSTRLEN]; /* max DNS name length + max IP length + max command length */ char cmd[100]; uint32_t dns_addr; #endif char * hashstr; assert(hash); hashstr = malloc(ipcp_dir_hash_strlen() + 1); if (hashstr == NULL) return -1; ipcp_hash_str(hashstr, hash); #ifdef HAVE_DDNS /* unregister application with DNS server */ dns_addr = udp_data.dns_addr; if (dns_addr != 0) { if (inet_ntop(AF_INET, &dns_addr, dnsstr, INET_ADDRSTRLEN) == NULL) { free(hashstr); return -1; } sprintf(cmd, "server %s\nupdate delete %s A\nsend\nquit\n", dnsstr, hashstr); ddns_send(cmd); } #endif shim_data_reg_del_entry(udp_data.shim_data, hash); log_dbg("Unregistered " HASH_FMT ".", HASH_VAL(hash)); free(hashstr); return 0; } static int ipcp_udp_query(const uint8_t * hash) { uint32_t ip_addr = 0; char * hashstr; struct hostent * h; #ifdef HAVE_DDNS uint32_t dns_addr = 0; #endif assert(hash); hashstr = malloc(ipcp_dir_hash_strlen() + 1); if (hashstr == NULL) return -ENOMEM; ipcp_hash_str(hashstr, hash); if (shim_data_dir_has(udp_data.shim_data, hash)) { free(hashstr); return 0; } #ifdef HAVE_DDNS dns_addr = udp_data.dns_addr; if (dns_addr != 0) { ip_addr = ddns_resolve(hashstr, dns_addr); if (ip_addr == 0) { log_dbg("Could not resolve %s.", hashstr); free(hashstr); return -1; } } else { #endif h = gethostbyname(hashstr); if (h == NULL) { log_dbg("Could not resolve %s.", hashstr); free(hashstr); return -1; } ip_addr = *((uint32_t *) (h->h_addr_list[0])); #ifdef HAVE_DDNS } #endif if (shim_data_dir_add_entry(udp_data.shim_data, hash, ip_addr)) { log_err("Failed to add directory entry."); free(hashstr); return -1; } free(hashstr); return 0; } static int ipcp_udp_flow_alloc(int fd, const uint8_t * dst, qosspec_t qs) { struct sockaddr_in r_saddr; /* server address */ struct sockaddr_in f_saddr; /* flow */ socklen_t f_saddr_len = sizeof(f_saddr); int skfd; uint32_t ip_addr = 0; log_dbg("Allocating flow to " HASH_FMT ".", HASH_VAL(dst)); (void) qs; assert(dst); skfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); if (skfd < 0) return -1; /* this socket is for the flow */ memset((char *) &f_saddr, 0, sizeof(f_saddr)); f_saddr.sin_family = AF_INET; f_saddr.sin_addr.s_addr = local_ip; f_saddr.sin_port = 0; if (bind(skfd, (struct sockaddr *) &f_saddr, sizeof(f_saddr)) < 0) { close(skfd); return -1; } if (getsockname(skfd, (struct sockaddr *) &f_saddr, &f_saddr_len) < 0) { log_err("Could not get address from fd."); close(skfd); return -1; } if (!shim_data_dir_has(udp_data.shim_data, dst)) { log_dbg("Could not resolve destination."); close(skfd); return -1; } ip_addr = (uint32_t) shim_data_dir_get_addr(udp_data.shim_data, dst); /* connect to server (store the remote IP address in the fd) */ memset((char *) &r_saddr, 0, sizeof(r_saddr)); r_saddr.sin_family = AF_INET; r_saddr.sin_addr.s_addr = ip_addr; r_saddr.sin_port = LISTEN_PORT; if (connect(skfd, (struct sockaddr *) &r_saddr, sizeof(r_saddr)) < 0) { close(skfd); return -1; } pthread_rwlock_wrlock(&udp_data.flows_lock); udp_data.fd_to_uf[fd].udp = f_saddr.sin_port; udp_data.fd_to_uf[fd].skfd = skfd; udp_data.uf_to_fd[skfd] = fd; fset_add(udp_data.np1_flows, fd); pthread_rwlock_unlock(&udp_data.flows_lock); if (ipcp_udp_port_alloc(ip_addr, f_saddr.sin_port, dst, qs) < 0) { pthread_rwlock_wrlock(&udp_data.flows_lock); udp_data.fd_to_uf[fd].udp = -1; udp_data.fd_to_uf[fd].skfd = -1; udp_data.uf_to_fd[skfd] = -1; pthread_rwlock_unlock(&udp_data.flows_lock); close(skfd); return -1; } log_dbg("Flow pending on fd %d, UDP port %d.", fd, ntohs(f_saddr.sin_port)); return 0; } static int ipcp_udp_flow_alloc_resp(int fd, int response) { struct timespec ts = {0, FD_UPDATE_TIMEOUT * 1000}; struct timespec abstime; int skfd = -1; struct sockaddr_in f_saddr; struct sockaddr_in r_saddr; socklen_t len = sizeof(r_saddr); if (response) return 0; clock_gettime(PTHREAD_COND_CLOCK, &abstime); pthread_mutex_lock(&ipcpi.alloc_lock); while (ipcpi.alloc_id != fd && ipcp_get_state() == IPCP_OPERATIONAL) { ts_add(&abstime, &ts, &abstime); pthread_cond_timedwait(&ipcpi.alloc_cond, &ipcpi.alloc_lock, &abstime); } if (ipcp_get_state() != IPCP_OPERATIONAL) { pthread_mutex_unlock(&ipcpi.alloc_lock); return -1; } ipcpi.alloc_id = -1; pthread_cond_broadcast(&ipcpi.alloc_cond); pthread_mutex_unlock(&ipcpi.alloc_lock); pthread_rwlock_rdlock(&udp_data.flows_lock); skfd = udp_data.fd_to_uf[fd].skfd; pthread_rwlock_unlock(&udp_data.flows_lock); if (getsockname(skfd, (struct sockaddr *) &f_saddr, &len) < 0) { log_dbg("Socket with fd %d has no address.", skfd); return -1; } if (getpeername(skfd, (struct sockaddr *) &r_saddr, &len) < 0) { log_dbg("Socket with fd %d has no peer.", skfd); return -1; } pthread_rwlock_rdlock(&udp_data.flows_lock); set_fd(skfd); fset_add(udp_data.np1_flows, fd); pthread_rwlock_unlock(&udp_data.flows_lock); if (ipcp_udp_port_alloc_resp(r_saddr.sin_addr.s_addr, f_saddr.sin_port, r_saddr.sin_port, response) < 0) { pthread_rwlock_rdlock(&udp_data.flows_lock); clr_fd(skfd); pthread_rwlock_unlock(&udp_data.flows_lock); return -1; } log_dbg("Accepted flow, fd %d on UDP port %d.", fd, ntohs(f_saddr.sin_port)); return 0; } static int ipcp_udp_flow_dealloc(int fd) { int skfd = -1; ipcp_flow_fini(fd); pthread_rwlock_wrlock(&udp_data.flows_lock); fset_del(udp_data.np1_flows, fd); skfd = udp_data.fd_to_uf[fd].skfd; udp_data.uf_to_fd[skfd] = -1; udp_data.fd_to_uf[fd].udp = -1; udp_data.fd_to_uf[fd].skfd = -1; close(skfd); pthread_rwlock_unlock(&udp_data.flows_lock); pthread_rwlock_rdlock(&udp_data.flows_lock); clr_fd(skfd); pthread_rwlock_unlock(&udp_data.flows_lock); flow_dealloc(fd); log_dbg("Flow with fd %d deallocated.", fd); return 0; } static struct ipcp_ops udp_ops = { .ipcp_bootstrap = ipcp_udp_bootstrap, .ipcp_enroll = NULL, .ipcp_connect = NULL, .ipcp_disconnect = NULL, .ipcp_reg = ipcp_udp_reg, .ipcp_unreg = ipcp_udp_unreg, .ipcp_query = ipcp_udp_query, .ipcp_flow_alloc = ipcp_udp_flow_alloc, .ipcp_flow_join = NULL, .ipcp_flow_alloc_resp = ipcp_udp_flow_alloc_resp, .ipcp_flow_dealloc = ipcp_udp_flow_dealloc }; int main(int argc, char * argv[]) { if (ipcp_init(argc, argv, &udp_ops) < 0) goto fail_init; if (udp_data_init() < 0) { log_err("Failed to init udp data."); goto fail_data_init; } if (ipcp_boot() < 0) { log_err("Failed to boot IPCP."); goto fail_boot; } if (ipcp_create_r(0)) { log_err("Failed to notify IRMd we are initialized."); goto fail_create_r; } ipcp_shutdown(); if (ipcp_get_state() == IPCP_SHUTDOWN) { pthread_cancel(udp_data.packet_loop); pthread_cancel(udp_data.handler); pthread_cancel(udp_data.packet_reader); pthread_join(udp_data.packet_loop, NULL); pthread_join(udp_data.handler, NULL); pthread_join(udp_data.packet_reader, NULL); } udp_data_fini(); ipcp_fini(); exit(EXIT_SUCCESS); fail_create_r: ipcp_set_state(IPCP_NULL); ipcp_shutdown(); fail_boot: udp_data_fini(); fail_data_init: ipcp_fini(); fail_init: ipcp_create_r(-1); exit(EXIT_FAILURE); }