/* * Ouroboros - Copyright (C) 2016 * * Shim IPC process over UDP * * Dimitri Staessens <dimitri.staessens@intec.ugent.be> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <ouroboros/config.h> #include "ipcp.h" #include "flow.h" #include "shim_udp_config.h" #include <ouroboros/shm_du_map.h> #include <ouroboros/shm_ap_rbuff.h> #include <ouroboros/list.h> #include <ouroboros/utils.h> #include <ouroboros/ipcp.h> #include <ouroboros/dif_config.h> #include <ouroboros/sockets.h> #include <ouroboros/bitmap.h> #include <ouroboros/dev.h> #define OUROBOROS_PREFIX "ipcpd/shim-udp" #include <ouroboros/logs.h> #include <string.h> #include <sys/socket.h> #include <sys/select.h> #include <arpa/inet.h> #include <netdb.h> #include <netinet/in.h> #include <signal.h> #include <stdlib.h> #include <pthread.h> #include <sys/wait.h> #define THIS_TYPE IPCP_SHIM_UDP #define LISTEN_PORT htons(0x0D1F) #define SHIM_UDP_BUF_SIZE 256 #define SHIM_UDP_MAX_SDU_SIZE 8980 #define DNS_TTL 86400 #define shim_data(type) ((struct ipcp_udp_data *) type->data) #define local_ip (((struct ipcp_udp_data *) \ _ipcp->data)->s_saddr.sin_addr.s_addr) /* global for trapping signal */ int irmd_pid; /* this IPCP's data */ #ifdef MAKE_CHECK extern struct ipcp * _ipcp; /* defined in test */ #else struct ipcp * _ipcp; #endif /* * copied from ouroboros/dev. The shim needs access to the internals * because it doesn't follow all steps necessary steps to get * the info */ /* the shim needs access to these internals */ struct shim_ap_data { instance_name_t * api; struct shm_du_map * dum; struct bmp * fds; struct shm_ap_rbuff * rb; struct flow flows[AP_MAX_FLOWS]; pthread_t mainloop; pthread_t sduloop; pthread_t handler; pthread_t sdu_reader; } * _ap_instance; static int shim_ap_init(char * ap_name) { _ap_instance = malloc(sizeof(struct shim_ap_data)); if (_ap_instance == NULL) { return -1; } _ap_instance->api = instance_name_create(); if (_ap_instance->api == NULL) { free(_ap_instance); return -1; } if (instance_name_init_from(_ap_instance->api, ap_name, getpid()) == NULL) { instance_name_destroy(_ap_instance->api); free(_ap_instance); return -1; } _ap_instance->fds = bmp_create(AP_MAX_FLOWS, 0); if (_ap_instance->fds == NULL) { instance_name_destroy(_ap_instance->api); free(_ap_instance); return -1; } _ap_instance->dum = shm_du_map_open(); if (_ap_instance->dum == NULL) { instance_name_destroy(_ap_instance->api); bmp_destroy(_ap_instance->fds); free(_ap_instance); return -1; } _ap_instance->rb = shm_ap_rbuff_create(); if (_ap_instance->rb == NULL) { instance_name_destroy(_ap_instance->api); bmp_destroy(_ap_instance->fds); free(_ap_instance); return -1; } return 0; } void shim_ap_fini() { int i = 0; if (_ap_instance == NULL) return; if (_ap_instance->api != NULL) instance_name_destroy(_ap_instance->api); if (_ap_instance->fds != NULL) bmp_destroy(_ap_instance->fds); if (_ap_instance->dum != NULL) shm_du_map_close(_ap_instance->dum); if (_ap_instance->rb != NULL) shm_ap_rbuff_destroy(_ap_instance->rb); for (i = 0; i < AP_MAX_FLOWS; i ++) if (_ap_instance->flows[i].rb != NULL) shm_ap_rbuff_close(_ap_instance->flows[i].rb); free(_ap_instance); } static int port_id_to_fd(int port_id) { int i; for (i = 0; i < AP_MAX_FLOWS; ++i) if (_ap_instance->flows[i].port_id == port_id && _ap_instance->flows[i].state != FLOW_NULL) return i; return -1; } static ssize_t ipcp_udp_flow_write(int fd, void * buf, size_t count) { /* the AP chooses the amount of headspace and tailspace */ size_t index = shm_create_du_buff(_ap_instance->dum, count, 0, buf, count); struct rb_entry e = {index, _ap_instance->flows[fd].port_id}; if (index == -1) return -1; if (shm_ap_rbuff_write(_ap_instance->flows[fd].rb, &e) < 0) { shm_release_du_buff(_ap_instance->dum, index); return -EPIPE; } return 0; } /* * end copy from dev.c */ struct ipcp_udp_data { /* keep ipcp_data first for polymorphism */ struct ipcp_data ipcp_data; uint32_t ip_addr; uint32_t dns_addr; /* listen server */ struct sockaddr_in s_saddr; int s_fd; fd_set flow_fd_s; pthread_mutex_t lock; }; struct ipcp_udp_data * ipcp_udp_data_create() { struct ipcp_udp_data * udp_data; struct ipcp_data * data; enum ipcp_type ipcp_type; udp_data = malloc(sizeof *udp_data); if (udp_data == NULL) { LOG_DBGF("Failed to allocate."); return NULL; } ipcp_type = THIS_TYPE; data = (struct ipcp_data *) udp_data; if (ipcp_data_init(data, ipcp_type) == NULL) { free(udp_data); return NULL; } FD_ZERO(&udp_data->flow_fd_s); return udp_data; } void ipcp_sig_handler(int sig, siginfo_t * info, void * c) { switch(sig) { case SIGINT: case SIGTERM: case SIGHUP: if (info->si_pid == irmd_pid || info->si_pid == 0) { LOG_DBG("Terminating by order of %d. Bye.", info->si_pid); pthread_cancel(_ap_instance->mainloop); pthread_cancel(_ap_instance->handler); pthread_cancel(_ap_instance->sdu_reader); pthread_cancel(_ap_instance->sduloop); /* FIXME: should be called after join */ shim_ap_fini(); exit(0); } default: return; } } static void * ipcp_udp_listener() { char buf[SHIM_UDP_BUF_SIZE]; int n = 0; struct sockaddr_in f_saddr; struct sockaddr_in c_saddr; int sfd = shim_data(_ipcp)->s_fd; while (true) { int fd; memset(&buf, 0, SHIM_UDP_BUF_SIZE); n = sizeof c_saddr; n = recvfrom(sfd, buf, SHIM_UDP_BUF_SIZE, 0, (struct sockaddr *) &c_saddr, (unsigned *) &n); if (n < 0) continue; /* flow alloc request from other host */ if (gethostbyaddr((const char *) &c_saddr.sin_addr.s_addr, sizeof(c_saddr.sin_addr.s_addr), AF_INET) == NULL) continue; fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); memset((char *) &f_saddr, 0, sizeof f_saddr); f_saddr.sin_family = AF_INET; f_saddr.sin_addr.s_addr = local_ip; /* * FIXME: we could have a port dedicated per registered AP * Not that critical for UDP, but will be for LLC */ f_saddr.sin_port = 0; /* * store the remote address in the file descriptor * this avoids having to store the sockaddr_in in * the flow structure */ if (connect(fd, (struct sockaddr *) &c_saddr, sizeof c_saddr) < 0) { close(fd); continue; } /* echo back the packet */ if (send(fd, buf, strlen(buf), 0) < 0) { LOG_ERR("Failed to echo back the packet."); close(fd); continue; } /* reply to IRM */ _ap_instance->flows[fd].port_id = ipcp_flow_req_arr(getpid(), buf, UNKNOWN_AP, UNKNOWN_AE); if (_ap_instance->flows[fd].port_id < 0) { LOG_ERR("Could not get port id from IRMd"); close(fd); continue; } _ap_instance->flows[fd].rb = NULL; _ap_instance->flows[fd].state = FLOW_PENDING; LOG_DBG("Pending allocation request, port_id %u, UDP fd %d.", _ap_instance->flows[fd].port_id, fd); } return 0; } static void * ipcp_udp_sdu_reader() { int n; int fd; char buf[SHIM_UDP_MAX_SDU_SIZE]; struct timeval tv = {0, 10}; struct sockaddr_in r_saddr; fd_set read_fds; while (true) { read_fds = shim_data(_ipcp)->flow_fd_s; if (select(FD_SETSIZE, &read_fds, NULL, NULL, &tv) <= 0) continue; for (fd = 0; fd < FD_SETSIZE; ++fd) { if (!FD_ISSET(fd, &read_fds)) continue; n = sizeof r_saddr; n = recvfrom(fd, buf, SHIM_UDP_MAX_SDU_SIZE, 0, (struct sockaddr *) &r_saddr, (unsigned *) &n); /* send the sdu to the correct port_id */ ipcp_udp_flow_write(fd, buf, n); } } return (void *) 0; } static int ipcp_udp_bootstrap(struct dif_config * conf) { char ipstr[INET_ADDRSTRLEN]; char dnsstr[INET_ADDRSTRLEN]; int enable = 1; if (conf->type != THIS_TYPE) { LOG_ERR("Config doesn't match IPCP type."); return -1; } if (_ipcp->state != IPCP_INIT) { LOG_ERR("IPCP in wrong state."); return -1; } if (inet_ntop(AF_INET, &conf->ip_addr, ipstr, INET_ADDRSTRLEN) == NULL) { LOG_ERR("Failed to convert IP address"); return -1; } if (conf->dns_addr != 0) { if (inet_ntop(AF_INET, &conf->dns_addr, dnsstr, INET_ADDRSTRLEN) == NULL) { LOG_ERR("Failed to convert DNS address"); return -1; } #ifndef CONFIG_OUROBOROS_ENABLE_DNS LOG_WARN("DNS disabled at compile time, address ignored"); #endif } else { strcpy(dnsstr, "not set"); } shim_data(_ipcp)->ip_addr = conf->ip_addr; shim_data(_ipcp)->dns_addr = conf->dns_addr; /* UDP listen server */ if ((shim_data(_ipcp)->s_fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1) { LOG_DBGF("Can't create socket."); return -1; } if (setsockopt(shim_data(_ipcp)->s_fd, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(int)) < 0) { LOG_DBGF("Setsockopt(SO_REUSEADDR) failed."); } shim_data(_ipcp)->s_saddr.sin_family = AF_INET; shim_data(_ipcp)->s_saddr.sin_addr.s_addr = conf->ip_addr; shim_data(_ipcp)->s_saddr.sin_port = LISTEN_PORT; if (bind(shim_data(_ipcp)->s_fd, (struct sockaddr *) &shim_data(_ipcp)->s_saddr, sizeof shim_data(_ipcp)->s_saddr ) < 0) { LOG_ERR("Couldn't bind to %s.", ipstr); return -1; } FD_CLR(shim_data(_ipcp)->s_fd, &shim_data(_ipcp)->flow_fd_s); pthread_create(&_ap_instance->handler, NULL, ipcp_udp_listener, NULL); pthread_create(&_ap_instance->sdu_reader, NULL, ipcp_udp_sdu_reader, NULL); _ipcp->state = IPCP_ENROLLED; LOG_DBG("Bootstrapped shim IPCP over UDP with pid %d.", getpid()); LOG_DBG("Bound to IP address %s.", ipstr); LOG_DBG("DNS server address is %s.", dnsstr); return 0; } #ifdef CONFIG_OUROBOROS_ENABLE_DNS /* FIXME: Dependency on nsupdate to be removed in the end */ /* NOTE: Disgusted with this crap */ static int ddns_send(char * cmd) { pid_t pid = 0; int wstatus; int pipe_fd[2]; char * argv[] = {NSUPDATE_EXEC, 0}; char * envp[] = {0}; if (pipe(pipe_fd)) { LOG_ERR("Failed to create pipe."); return -1; } pid = fork(); if (pid == -1) { LOG_ERR("Failed to fork."); return -1; } if (pid == 0) { close(pipe_fd[1]); dup2(pipe_fd[0], 0); execve(argv[0], &argv[0], envp); } close(pipe_fd[0]); if (write(pipe_fd[1], cmd, strlen(cmd)) == -1) { LOG_ERR("Failed to communicate with nsupdate."); close(pipe_fd[1]); return -1; } waitpid(pid, &wstatus, 0); if (WIFEXITED(wstatus) == true && WEXITSTATUS(wstatus) == 0) LOG_DBGF("Succesfully communicated with DNS server."); else LOG_ERR("Failed to register with DNS server."); close(pipe_fd[1]); return 0; } static uint32_t ddns_resolve(char * name, uint32_t dns_addr) { pid_t pid = 0; int wstatus; int pipe_fd[2]; char dnsstr[INET_ADDRSTRLEN]; char buf[SHIM_UDP_BUF_SIZE]; ssize_t count = 0; char * substr = NULL; char * substr2 = NULL; char * addr_str = "Address:"; uint32_t ip_addr = 0; if (inet_ntop(AF_INET, &dns_addr, dnsstr, INET_ADDRSTRLEN) == NULL) { return 0; } if (pipe(pipe_fd)) { LOG_ERR("Failed to create pipe."); return 0; } pid = fork(); if (pid == -1) { LOG_ERR("Failed to fork."); return 0; } if (pid == 0) { char * argv[] = {NSLOOKUP_EXEC, name, dnsstr, 0}; char * envp[] = {0}; close(pipe_fd[0]); dup2(pipe_fd[1], 1); execve(argv[0], &argv[0], envp); } close(pipe_fd[1]); count = read(pipe_fd[0], buf, SHIM_UDP_BUF_SIZE); if (count <= 0) { LOG_ERR("Failed to communicate with nslookup."); close(pipe_fd[0]); return 0; } close(pipe_fd[0]); waitpid(pid, &wstatus, 0); if (WIFEXITED(wstatus) == true && WEXITSTATUS(wstatus) == 0) LOG_DBGF("Succesfully communicated with nslookup."); else LOG_ERR("Failed to resolve DNS address."); buf[count] = '\0'; substr = strtok(buf, "\n"); while (substr != NULL) { substr2 = substr; substr = strtok(NULL, "\n"); } if (strstr(substr2, addr_str) == NULL) { LOG_ERR("Failed to resolve DNS address."); return 0; } if (inet_pton(AF_INET, substr2 + strlen(addr_str) + 1, &ip_addr) != 1) { LOG_ERR("Failed to resolve DNS address."); return 0; } return ip_addr; } #endif static int ipcp_udp_name_reg(char * name) { #ifdef CONFIG_OUROBOROS_ENABLE_DNS char ipstr[INET_ADDRSTRLEN]; char dnsstr[INET_ADDRSTRLEN]; /* max DNS name length + max IP length + command length */ char cmd[100]; uint32_t dns_addr; uint32_t ip_addr; #endif if (_ipcp->state != IPCP_ENROLLED) { LOG_DBGF("Won't register with non-enrolled IPCP."); return -1; } if (strlen(name) > 24) { LOG_ERR("DNS names cannot be longer than 24 chars."); return -1; } if (ipcp_data_add_reg_entry(_ipcp->data, name)) { LOG_ERR("Failed to add %s to local registry.", name); return -1; } #ifdef CONFIG_OUROBOROS_ENABLE_DNS /* register application with DNS server */ dns_addr = shim_data(_ipcp)->dns_addr; if (dns_addr != 0) { ip_addr = shim_data(_ipcp)->ip_addr; if (inet_ntop(AF_INET, &ip_addr, ipstr, INET_ADDRSTRLEN) == NULL) { return -1; } if (inet_ntop(AF_INET, &dns_addr, dnsstr, INET_ADDRSTRLEN) == NULL) { return -1; } sprintf(cmd, "server %s\nupdate add %s %d A %s\nsend\nquit\n", dnsstr, name, DNS_TTL, ipstr); if (ddns_send(cmd)) { ipcp_data_del_reg_entry(_ipcp->data, name); return -1; } } #endif LOG_DBG("Registered %s.", name); return 0; } static int ipcp_udp_name_unreg(char * name) { #ifdef CONFIG_OUROBOROS_ENABLE_DNS char dnsstr[INET_ADDRSTRLEN]; /* max DNS name length + max IP length + max command length */ char cmd[100]; uint32_t dns_addr; #endif if (strlen(name) > 24) { LOG_ERR("DNS names cannot be longer than 24 chars."); return -1; } #ifdef CONFIG_OUROBOROS_ENABLE_DNS /* unregister application with DNS server */ dns_addr = shim_data(_ipcp)->dns_addr; if (dns_addr != 0) { if (inet_ntop(AF_INET, &dns_addr, dnsstr, INET_ADDRSTRLEN) == NULL) { return -1; } sprintf(cmd, "server %s\nupdate delete %s A\nsend\nquit\n", dnsstr, name); ddns_send(cmd); } #endif ipcp_data_del_reg_entry(_ipcp->data, name); LOG_DBG("Unregistered %s.", name); return 0; } static int ipcp_udp_flow_alloc(int port_id, pid_t n_pid, char * dst_name, char * src_ap_name, char * src_ae_name, struct qos_spec * qos) { struct sockaddr_in l_saddr; struct sockaddr_in r_saddr; struct sockaddr_in rf_saddr; int fd; int n; char * recv_buf = NULL; struct hostent * h; uint32_t ip_addr = 0; #ifdef CONFIG_OUROBOROS_ENABLE_DNS uint32_t dns_addr = 0; #endif if (dst_name == NULL || src_ap_name == NULL || src_ae_name == NULL) return -1; if (strlen(dst_name) > 255 || strlen(src_ap_name) > 255 || strlen(src_ae_name) > 255) { LOG_ERR("Name too long for this shim."); return -1; } if (qos != NULL) LOG_DBGF("QoS requested. UDP/IP can't do that."); fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); /* this socket is for the flow */ memset((char *) &l_saddr, 0, sizeof l_saddr); l_saddr.sin_family = AF_INET; l_saddr.sin_addr.s_addr = local_ip; l_saddr.sin_port = 0; if (bind(fd, (struct sockaddr *) &l_saddr, sizeof l_saddr) < 0) { close(fd); return -1; } #ifdef CONFIG_OUROBOROS_ENABLE_DNS dns_addr = shim_data(_ipcp)->dns_addr; if (dns_addr != 0) { ip_addr = ddns_resolve(dst_name, dns_addr); if (ip_addr == 0) { LOG_DBGF("Could not resolve %s.", dst_name); close(fd); return -1; } } else { #endif h = gethostbyname(dst_name); if (h == NULL) { LOG_DBGF("Could not resolve %s.", dst_name); close(fd); return -1; } ip_addr = *((uint32_t *) (h->h_addr_list[0])); #ifdef CONFIG_OUROBOROS_ENABLE_DNS } #endif memset((char *) &r_saddr, 0, sizeof r_saddr); r_saddr.sin_family = AF_INET; r_saddr.sin_addr.s_addr = ip_addr; r_saddr.sin_port = LISTEN_PORT; if (sendto(fd, dst_name, strlen(dst_name), 0, (struct sockaddr *) &r_saddr, sizeof r_saddr) < 0) { LOG_ERR("Failed to send packet"); close(fd); return -1; } /* wait for the other shim IPCP to respond */ recv_buf = malloc(strlen(dst_name) + 1); if (recv_buf == NULL) { LOG_ERR("Failed to malloc recv_buff."); close(fd); return -1; } n = sizeof(rf_saddr); n = recvfrom(fd, recv_buf, strlen(dst_name), 0, (struct sockaddr *) &rf_saddr, (unsigned *) &n); if (connect(fd, (struct sockaddr *) &rf_saddr, sizeof rf_saddr) < 0) { close(fd); free(recv_buf); return -1; } if (memcmp(recv_buf, dst_name, strlen(dst_name))) LOG_WARN("Incorrect echo from server"); free(recv_buf); _ap_instance->flows[fd].port_id = port_id; _ap_instance->flows[fd].state = FLOW_ALLOCATED; _ap_instance->flows[fd].rb = shm_ap_rbuff_open(n_pid); if (_ap_instance->flows[fd].rb == NULL) { LOG_ERR("Could not open N + 1 ringbuffer."); close(fd); return -1; } /* tell IRMd that flow allocation "worked" */ if (ipcp_flow_alloc_reply(getpid(), port_id, 0)) { LOG_ERR("Failed to notify IRMd about flow allocation reply"); close(fd); shm_ap_rbuff_close(_ap_instance->flows[fd].rb); return -1; } FD_SET(fd, &shim_data(_ipcp)->flow_fd_s); LOG_DBG("Allocated flow with port_id %d on UDP fd %d.", port_id, fd); return fd; } static int ipcp_udp_flow_alloc_resp(int port_id, pid_t n_pid, int response) { int fd = port_id_to_fd(port_id); if (fd < 0) { LOG_DBGF("Could not find flow with port_id %d.", port_id); return 0; } if (response) return 0; /* awaken pending flow */ if (_ap_instance->flows[fd].state != FLOW_PENDING) { LOG_DBGF("Flow was not pending."); return -1; } _ap_instance->flows[fd].state = FLOW_ALLOCATED; _ap_instance->flows[fd].rb = shm_ap_rbuff_open(n_pid); if (_ap_instance->flows[fd].rb == NULL) { LOG_ERR("Could not open N + 1 ringbuffer."); _ap_instance->flows[fd].state = FLOW_NULL; _ap_instance->flows[fd].port_id = 0; return 0; } FD_SET(fd, &shim_data(_ipcp)->flow_fd_s); LOG_DBG("Accepted flow, port_id %d on UDP fd %d.", port_id, fd); return 0; } static int ipcp_udp_flow_dealloc(int port_id) { int fd = port_id_to_fd(port_id); if (fd < 0) { LOG_DBGF("Could not find flow with port_id %d.", port_id); return 0; } _ap_instance->flows[fd].state = FLOW_NULL; _ap_instance->flows[fd].port_id = 0; if (_ap_instance->flows[fd].rb != NULL) shm_ap_rbuff_close(_ap_instance->flows[fd].rb); FD_CLR(fd, &shim_data(_ipcp)->flow_fd_s); close(fd); return 0; } static struct ipcp * ipcp_udp_create(char * ap_name) { struct ipcp * i; struct ipcp_udp_data * data; struct ipcp_ops * ops; if (shim_ap_init(ap_name) < 0) return NULL; i = malloc(sizeof *i); if (i == NULL) return NULL; data = ipcp_udp_data_create(); if (data == NULL) { free(i); return NULL; } ops = malloc(sizeof *ops); if (ops == NULL) { free(data); free(i); return NULL; } ops->ipcp_bootstrap = ipcp_udp_bootstrap; ops->ipcp_enroll = NULL; /* shim */ ops->ipcp_reg = NULL; /* shim */ ops->ipcp_unreg = NULL; /* shim */ ops->ipcp_name_reg = ipcp_udp_name_reg; ops->ipcp_name_unreg = ipcp_udp_name_unreg; ops->ipcp_flow_alloc = ipcp_udp_flow_alloc; ops->ipcp_flow_alloc_resp = ipcp_udp_flow_alloc_resp; ops->ipcp_flow_dealloc = ipcp_udp_flow_dealloc; i->data = (struct ipcp_data *) data; i->ops = ops; i->state = IPCP_INIT; return i; } #ifndef MAKE_CHECK /* FIXME: if we move _ap_instance to dev.h, we can reuse it everywhere */ /* FIXME: stop eating the CPU */ static void * ipcp_udp_sdu_loop(void * o) { while (true) { struct rb_entry * e = shm_ap_rbuff_read(_ap_instance->rb); int fd; int len = 0; char * buf; if (e == NULL) continue; len = shm_du_map_read_sdu((uint8_t **) &buf, _ap_instance->dum, e->index); if (len == -1) continue; fd = port_id_to_fd(e->port_id); if (fd == -1) continue; if (len == 0) continue; send(fd, buf, len, 0); shm_release_du_buff(_ap_instance->dum, e->index); } return (void *) 1; } int main (int argc, char * argv[]) { /* argument 1: pid of irmd ? */ /* argument 2: ap name */ struct sigaction sig_act; if (ipcp_arg_check(argc, argv)) { LOG_ERR("Wrong arguments."); exit(1); } /* store the process id of the irmd */ irmd_pid = atoi(argv[1]); /* init sig_act */ memset(&sig_act, 0, sizeof sig_act); /* install signal traps */ sig_act.sa_sigaction = &ipcp_sig_handler; sig_act.sa_flags = SA_SIGINFO; sigaction(SIGINT, &sig_act, NULL); sigaction(SIGTERM, &sig_act, NULL); sigaction(SIGHUP, &sig_act, NULL); sigaction(SIGPIPE, &sig_act, NULL); _ipcp = ipcp_udp_create(argv[2]); if (_ipcp == NULL) { LOG_ERR("Won't."); exit(1); } pthread_create(&_ap_instance->mainloop, NULL, ipcp_main_loop, _ipcp); pthread_create(&_ap_instance->sduloop, NULL, ipcp_udp_sdu_loop, NULL); pthread_join(_ap_instance->sduloop, NULL); pthread_join(_ap_instance->mainloop, NULL); pthread_join(_ap_instance->handler, NULL); pthread_join(_ap_instance->sdu_reader, NULL); exit(0); } #endif /* MAKE_CHECK */